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Where are we? Where are we going?

- Last time: introducing estimators, looking at finite-sample properties.

+ Now: can we say more as sample size grows?
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1] Asymptotics



Current knowledge

« Fori.id. rvs, X, ..., X, with E[X;] = u and V[X;] = o2 we know that:

+ X, is unbiased, E[X,] = E[X] = u
- Sampling variance is V[X,] = < where o2 = V[X|]
- None of these rely on a specific distribution for X!

« Assuming X; ~ N (u,o?), we know the exact distribution of X .

+ What if the data isn’t normal? What is the sampling distribution of X ,?

- Asymptotics: approximate the sampling distribution of X, as n gets big.
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Sequence of sample means

- What can we say about the sample mean n gets large?

+ Need to think about sequences of sample means with increasing n:

YIZXI

Xy = (1/2) - (X + X,)

X3 =(1/3) - (Xy + X + X3)

Xy = (1/4) - (X + X + X5 + X,)

X5 = (1/5) - (X + Xy + X5+ X, + Xs)

X,=(1/n)- (Xy+ X+ X3+ X + X+ + X,)

+ Note: this is a sequence of random variables!
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Asymptotics and Limits

- Asymptotic analysis is about making approximations to finite sample
properties.

+ Useful to know some properties of deterministic sequences:

Definition

A sequence {a,: n=1,2,...} has the limit a written a, — aas n — oo if for all
& > 0 there is some ng < oo such that for all n > ng, |a, — a| < 6.

» a, gets closer and closer to a as n gets larger (a, converges to a)

« {a,:n=1,2,...} is bounded if there is b < oo such that |a,| < b for all n.
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Convergence in Probability

Definition
A sequence of random variables, {Z, : n=1,2,...}, is said to converge in
probability to a value b if for every e > 0,

P(|Z,— b| > €) — 0,
as n — oo. We write this Z, 2.
- Basically: probability that Z, lies outside any (teeny, tiny) interval
around b approaches 0 as n — oo
o g a o P
« Economists writes plim(Z,) = b if Z, — b.

. . . ea P
+ An estimator is consistent if 6, — 0.

- Distribution of 6, collapses on 6 as n — oc.
+ Inconsistent estimator are bad bad bad: more data gives worse answers!
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Chebyshev Inequality

« How can we show convergence in probability? Can verify if we know
specific distribution of 6.

+ But can we say anything for arbitrary distributions?
Chebyshev Inequality
Suppose that X is r.v. for which V[X] < cc. Then, for every real number & > 0,

V[X]

P(X —EX]| 2 8) <~

+ Variance places limits on how far an observation can be from its mean.
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Proof of Chebyshev

- Let Z = X — E[X] with density f,(x). Probability is just integral over the
region:

P(Z| >6)= /|>,s f7(x)dx

+ Note that where |x| > &, we have 1 < x?/82, so

X2

oo 2
P%
5 f7(x)dx < [m gfz(x)dx =~ =

[P(|Z|25)S/

|x|>6
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Law of large numbers

Weak Law of Large Numbers

Let Xi,..., X, be aani.i.d. draws from a distribution with mean E[|X;|] < cc.
LetX, = 13" X.. Then, X, > E[X].

- Note: we don't assume finite variance, only finite expectation.

+ Proof with finite variance is an easy application of Chebyshev.

« Intuition: The probability of X, being “far away” from u goes to 0 as n
gets big.

+ Implies general consistency of plug-in estimators

« If E[lg(X))[] < oo, then £ 27 g(X;) = Elg(X))]
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LLN by simulation inR

 Draw different sample sizes from Exponential distribution with rate 0.5
« > E[X] =2
nsims <- 10000
holder <- matrix(NA, nrow = nsims, ncol
for (i in 1:nsims) {
s5 <- rexp(n = 5, rate = 0.5)
s15 <- rexp(n = 15, rate 0.5)
s30 <- rexp(n = 30, rate = 0.5)
s100 <- rexp(n = 100, rate = 0.5)
s1000 <- rexp(n = 1000, rate = 0.5)
10000 <- rexp(n = 10000, rate = 0.5)

holder[i,1
holder[1i,?2
holder[i,3
holder[i,4
holder[i,5
holder[i,6

<- mean(s5)

<- mean(s15)

<- mean(s30)
mean(s100)
mean(s1000)
mean(s10000)

]
]
]
]
]
]




LLN in action

Density

+ Distribution of X5
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LLN in action

Density

« Distribution of X3,
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LLN in action

Density

+ Distribution of X,
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LLN in action

Density

« Distribution of X0
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Properties of convergence in probability

1. Continuous mapping theorem: if X, at ¢, then g(X,) at g(c) for any
continuous function g.

. P P

2. if X, — aand Z, — b, then
e X, +2Z, B athb
- X,Z, % ab
. X,/Z, 5 a/bifb>0

+ Thus, by LLN and CMT:

C (%) D
- log(X,) > log()
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Unbiased versus consistent

- By Chebyshev, unbiased estimators are consistent if V[8,] — 0.
- Unbiased, not consistent: “first observation” estimator, 7 = X

- Unbiased because E[ff] = E[X,] = u
« Not consistent: 6 is constant in n so its distribution never collapses.
- Said differently: the variance of 6/ never shrinks.

- Consistent, but biased: sample mean with n replaced by n— 1:

n—lZX

+ Consistent because n/(n—1) — 1as n — oco.
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Multivariate LLN

« Let X; = (X, ..., Xj,) be a random vectors of length k.
+ Random (iid) sample of n of these k vectors, X, ..., X

ne

+ Vector sample mean:

. — P
+ Vector WLLN: if E[|X]] < oo, then as n — oo, X, — E[X].

- Converge in probability of a vector is just convergence of each element.
+ E[|X]] < oo is equivalent to E[|X;;|] < oo foreachj=1,...,k

1,
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2] Central Limit Theorem



Current knowledge

* Fori.id. rvs, X, ..., X,, with E[X;] = u and V[X;] = o2 we know that:

+ EX,] =pand VX,] = <

n

+ X, converges to u as n gets big
+ Chebyshev provides some bounds on probabilities.
« Still no distributional assumptions about X;!

+ Can we say more?

- Can we approximate Pr(a < X, < b)?
+ What family of distributions (Binomial, Uniform, Gamma, etc)?

+ Again, need to analyze when n is large.
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Convergence in Distribution

Definition

Let Z,, Z,, ..., be a sequence of rv.s, and for n = 1,2, ... let F,(u) be the c.d.f.
of Z,. Then it is said that Z;, Z,, ... converges in distribution to r.v. W with

cdf. Fy(u) i
lim F,(u) = Fy (u),

. . d
which we write as Z, — W.

- Basically: when n is big, the distribution of Z, is very similar to the
distribution of W

+ Also known as the asymptotic distribution or large-sample distribution

+ We use c.d.f.s here to avoid messy details with discrete vs continuous.
p d
< If X, — X, then X, — X
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Central Limit Theorem

Central Limit Theorem

Let Xi,..., X, be i.i.d. rv.s from a distribution with mean u = E[X;] and
variance o2 = V[X;]. Then if E[X?] < oo, we have

Vi (X, — ) 5 N(0,02).

+ Subtle point: why center and scale by /n?

+ The LLN implied that X, 4 uso X, LA 4, which isn’t very helpful!
+ /n(X, —u) is more “stable” since its variance doesn’t depend on n

- But we can use the result to get an approximation: X, < N(u,o?/n),
- 2 is “approximately distributed as”.
+ No assumptions about the distribution of X; except finite variance.

+ ~- approximations to probability statements about X, when n is big!
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CLT by simulation in R

set.seed(02138)
nsims <- 10000
holder2 <- matrix(NA, nrow = nsims, ncol
for (i in 1:nsims) {
s5 <- rbinom(n = 5, size = prob =
s15 <- rbinom(n = 15, size
s30 <- rbinom(n = 30, size
s100 <- rbinom(n = 100, size =
s1000 <- rbinom(n = 1000, size =

10000 <- rbinom(n = 10000, size

holder2 mean(s5)
holder2 mean(s15)
holder2 mean(s30)
holder2 mean(s100)
holder2 mean(s1000)
holder2 mean(s10000)




CLT in action
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CLT in action
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CLT in action
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CLT in action
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CLT in action
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+ Continuous mapping theorem: for continuous g, we have

2%z = gz)%e2).

n

. Let X;, X,, ... converge in distribution to some r.v. X
. Let Yy, Y,, ... converge in probability to some number, ¢

+ Slutsky’s Theorem gives the following result:

1. X,Y, converges in distribution to cX
2. X, + Y, converges in distribution to X + ¢
3. X,/Y, converges in distribution to X/cif ¢ # 0

+ Extremely useful when trying to figure out what the large-sample
distribution of an estimator is.
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Asymptotic normality

+ An estimator é,, for € is asymptotically normal when
Vi (8,—6) 5 N0, Vy)

+ Sample mean: \/n(X, — u) 4 N(0,02)
+ Usually follows from some version of the CLT

- V4 is the variance of this centered/scaled version of the estimator.

- The approximate variance of the estimator itself will be V[8,] < V,/n
- The approximate standard error will be se[8,] = \/V/n

+ Allows us to approximate the probability of én being far away from € in
large samples.

+ Warning: you do not know if you sample is big enough for this to be a
good approximation.
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Variance estimation with plug-in estimators

« Setting: Xi, ..., X, i.i.d. with quantity of interest 8 = E[g(X])]
-+ Let Vj = Vig(X))] = E[(g(X;) — 6)2].
- Analogy/plug-in estimator: 6, = 1 Y7 g(X;)

+ By the CLT, if E[g(X;)?] < oo then
Vi (8,—6) 5 N0, Vy)

+ But we don’t know V;,?! Estimate it!

LS ()-8,

i=1

V, =

+ We can show that \79 t V, and so by Slutsky:

vn (6, 9) 4 N, V)
v, VVe

~ N (0,1)
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Multivariate CLT

+ Convergence in distribution is the same vector Z,: convergence of
cd.fs

+ Allow us to generalize the CLT to random vectors:

Multivariate Central Limit Theorem

If X; € R¥ are i.i.d. and E|X;||> < oo, then as n — oo,

ﬁ(in *H> i N(Ovz)v

where g = E[X;] and £ = V[X,] = E[(X; — ) (X, — )]

« E|X;[* < oo is equivalent to E[X?;] < oo forallj=1,..., k.

- Basically: multivariate CLT holds if each r.v. in the vector has finite
variance.

+ Very common for when we're estimating multiple parameters & with 5,,
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3/ Confidence intervals



Interval estimation - what and why?

+ 8, is our best guess about ¢

- ButP(g, = 6) =0

« Alternative: produce a range of plausible values instead of one number.
+ Hopefully will increase the chance that we've captured the truth.

- We can use the distribution of estimators (CLT!!) to derive these
intervals.
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What is a confidence interval?

Definition

A1 — o confidence interval for a population parameter @ is a pair of statistics
L=L(X,...,X,) and U= U(X,,..., X,) such that L < U and such that

PL<O<U)=1—a, V6

+ Random interval (L, U) will contain the truth 1 — a of the time.
- P(L < @< V) is the coverage probability of the Cl

+ Extremely useful way to represent our uncertainty about our estimate.
+ Shows a range of plausible values given the data.

+ A sequence of Cls, [L,, U,] are asymptotically valid if the coverage
probability converges to correct level:

limP(L, <6< U)=1—a

n—oo
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Asymptotic confidence intervals

+ A sequence of Cls, [L,, U,] are asymptotically valid if the coverage
probability converges to correct level:

limP(L,<8<U)=1—a

n—oo

+ We can derive such Cls when our estimators are asymptotically normal:

9%~ 9 4 1)

« Thenas n— oo
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Deriving the 95% Cl

P (1.96 < ﬁie < 1.96) —0.95

P(-1.96-58(6,) <6, — 6 <1.96-5¢(6,))
P(~6,—1.96-58(6,) < —0 < —0,+1.96 - 58(6,)) — 0.95
P(6,—1.96-58(,) <6 <8,+1.96-58(4,))

+ Lower bound: é,, —1.96- se(én)

+ Upper bound: é,, +1.96 - se(én)
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Finding the critical values

0.5
0.4
0.3
0.2
0.1
0.0
-0.1 -

dnorm(x)

Zy)2 = -1.64 Zigf2= 1.64

6, -6 5 =3
Pl—ziogp< <274 | 21—a = 1—a)Cl: 8,+2_,/,-5€(8,
( 1-a/2 %6, 1 /2) ( ) 1-a/2°5€(6,)

* How do we figure out what z,_ , will be?
- Intuitively, we want the z values that puts a/2 in each of the tails.

* Because normal is symmetric, we have z,, = —z_4»

- Use the quantile function: z_,, = ®'(1 —a/2) (qnormin R)
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Cl for social pressure effect

TABLE 2. Effects of Four Mail Treatments on Voter Turnout in the August 2006 Primary
Election
Experimental Group
Control Civic Duty Hawthorne Self Neighbors
Percentage Voting 29.7% 31.5% 32.2% 34.5% 37.8%
N of Individuals 191,243 38,218 38,204 38,218 38,201

neigh_var <- var(social$voted[social$treatment ==

neigh_n <- 38201

civic_var <- var(social$voted[social$treatment == "Civic Duty”])
civic_n <- 38218

se_diff <- sqrt(neigh_var/neigh_n + civic_var/civic_n)

c((0.378 - 0.315) - 1.96 * se_diff, (0.378 - 0.315) + 1.96 * se_diff)

## [1] 0.0563 0.0697
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Interpreting the confidence interval

+ Caution: a common incorrect interpretation of a confidence interval:

+ “l calculated a 95% confidence interval of [0.05,013], which means that
there is a 95% chance that the true difference in means in is that
interval.”

+ This is WRONG.

+ The true value of the population mean, y, is fixed.
« Itis eitherin the interval or it isn't—there’s no room for probability at all.
+ The randomness is in the interval: X, & 1.96S, /+/n.

« Correct interpretation: across 95% of random samples, the constructed
confidence interval will contain the true value.
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Confidence interval simulation

- Draw samples of size 500 (pretty big) from N (1, 10)

« Calculate confidence intervals for the sample mean:

X, +1.96 x 5€[X,] ~ X, +1.96 x S, /+/n

sims<- 10000
cover <- rep(0, times = sims)
low.bound <- up.bound <- rep(NA, times = sims)
for(i in 1:sims){
draws <- rnorm(500, mean = 1, sd = sqrt(10))
low.bound[i] <- mean(draws) - sd(draws) / sqrt(500) * 1.96

up.bound[i] <- mean(draws) + sd(draws) / sqrt(500) * 1.96
if (low.bound[i] < 1 & up.bound[i] > 1) {
cover[i] <- 1

}
}

mean(cover)

## [1] 0.95
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Plotting the Cls
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Plotting the Cls
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Plotting the Cls

14

1.2

Estimate
P

0.8

0.6 -

Trial

41/ 48



Plotting the Cls
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Plotting the Cls
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- Question What happens to the size of the confidence interval when we
increase our confidence, from say 95% to 99%? Do confidence intervals
get wider or shorter?

+ Answer Wider!

- Decreases a~ increases 1 — or/2~> increases z,,
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Delta method

Delta method

If /n (é,, — 9) 4 N (0, V) and h(u) is continuously differentiable in a
neighborhood around 6, then as n — oo,

Vi (h(6,) — h(8)) 5 N (0, (W (6))?Vp).

+ Why h() continuously differentiable?

+ Near ¢ we can approximate h() with a line where h’ is the slope.
* S0 h(B,) — h(6) ~ ' (6) (6, — 6)

« Examples:

o VA(X — u2) 5 N (0, (2u)20?)
- V/n(log(X,) — log(u)) = N (0,02 /u?)
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Multivariate Delta Method

+ What if we want to know the asymptotic distribution of a function of 5,,?

- Let h(#) map from Rk — R™ and be continuously differentiable.

« Ex: h(6y,6,,0;) = (6,/6,,65/6,), from R® — R?
+ Like univariate case, we need the derivatives arranged in m x k Jacobian

matrix:
Ohy  Oh - Oh
26, 06, 90,
Ohy  Ohy - Ohy
H(8) = V3h(8) = 3?1 3?2 af’k
ohy, — Oh, Oh,
20, 00, 90,

+ Multivariate delta method: if v/n (5,, — 0) 4 N(0,X), then

Vi (h(8,) —h(8)) 5 N(0, H(B)ZH(6))
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Stochastic order notation

« When working with asymptotics, it's often useful to have some
shorthand.

- Order notation for deterministic sequences:

« If a, — 0, then we write a, = o(1) (“little-oh-one”)
. If n™%a, — 0, we write a, = o(n")

« If a, is bounded, we write a, = O(1) (“big-oh-one”)
- If n%a, is bounded, we write a, = O(n)

+ Stochastic order notation for random sequence, Z,

- IfZ, %0, we write Z, = o,(1) (“little-oh-p-one”).
« For any consistent estimator, we have 8, = 6 + o,(1)

. Ifa,lz, % 0, we write Z, = o,(a,)
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Bounded in probability

Definition

A random sequence Z, is bounded in probability, written Z, = 0,(1)
(“big-oh-p-one”) for all & > 0 there exists a Mg and ng, such that for n > ng,

P(|Z,| > Ms) < &

0,(1) implies Z, = O,(1) but not the reverse.

n=

« If Z, converges in distribution, it is O,(1), so if the CLT applies we have:

- If 3,17, = 0,(1), we write Z, = O,(a,), so we have: §, = 8 + 0,(n"*/?).
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