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Where are we? Where are we going?

+ Recently: how to build estimators to estimate parameters.
+ Also learned properties of these estimators in finite and large samples.

+ Now: how to use estimates to test a particular hypothesis about a
parameter.

« We'll draw on our probability knowledge from earlier in the term!
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1/ Hypothesis Testing
Examples



The lady tasting tea

+ Biologist Muriel Bristol claimed she could tell whether tea or milk was
added first to a cup.

+ R.A. Fisher was skeptical so he devised a test:

- Prepare 8 cups of tea, 4 milk-first, 4 tea-first
+ Present cups in a random order, asked her to pick which 4 are milk-first

+ She guessed all correctly!

+ This is our data. What can we learn from it?
+ There is uncertainty: she could have guessed randomly.
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Taste tests

- Statistical thought experiment: how often would she get all 4 correct if
she were guessing randomly?

+ Only one way to choose all 4 correct cups, but 70 ways of choosing &
cups among 8.
+ Choosing at random = picking each of these 70 with equal probability.

+ Chances of guessing all 4 correct is =5 ~ 0.014 or 1.4%.

+ ~> the guessing at random hypothesis might be implausible.

4/35



Social pressure effect

Dear Registered Voter:

WHAT IF YOUR NEIGHBORS KNEW WHETHER YOU VOTED?

Why do so many people fail to vote? We've been talking about the problem for
years, but it only seems to get worse. This year, we're taking a new approach.
We're sending this mailing to you and your neighbors to publicize who does and
does not vote.

The chart shows the names of some of your neighbors, showing which have voted in
the past. After the August B election, we intend o mail an updated chart. You
and your neighbors will all know who voted and who did not.

DO YOUR CIVIC DUTY — VOTE!

MAPLE DR Aug 04 Nov04 Aug 06

9995 JOSEPH JAMES SMITH Voted Voted

9995 JENNIFER KAY SMITH Voted

9997 RICHARD B JACKSON Voted

9999 KATHY MARIE JACKSON Voted
TABLE 2. Effects of Four Mail Treatments on Voter Turnout in the August 2006 Primary
Election

Experimental Group
Control Civic Duty Hawthorne Self Neighbors

Percentage Voting 29.7% 31.5% 32.2% 34.5% 37.8%
N of Individuals 191,243 38,218 38,204 38,218 38,201
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Social pressure effect

load(”../assets/gerber_green_larimer.RData”
social$voted <- 1 * (social$voted == "Yes”)
neigh.mean <- mean(social$voted[social$treatment == "Neighbors”])

contr.mean <- mean(social$voted[social$treatment == "Civic Duty”])
neigh.mean - contr.mean

## [1] 0.0634
+ Treatment effect of 6.3 percentage points.
+ But the estimator varies from sample to sample by random chance.

« Could it be this big by random chance if there was no effect at all?
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Difference in means

- Treated group Y,,Y,, ..., i i.i.d. with population mean u, and
population variance oy,

+ Control group X;, X, ..., X, i.i.d. with population mean u, and
population variance o?

+ Quantity of interest: population differences in average turnout

T = E[Y] ~ E[X]

1

+ Estimator: sample difference in means: 7, = Vny - X,

x

- We estimate the standard error of 7, with:

. s? 2
se[T,] = ny + nX
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2/ Hypothesis Testing
Framework



What is a hypothesis?

+ A hypothesis is just a statement a population parameter, 6.

+ We might have hypotheses about causal inferences:

- Does social pressure induce higher voter turnout? (mean turnout higher
in social pressure group compared to Civic Duty group?)

- Do treaties constrain countries? (behavior different among treaty
signers?)

+ We might also have hypotheses about other parameters:

+ Is the share of Biden supporters more than 50%?
- Are traits of treatment and control groups different?
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Hypothesis testing procedure

1.
22
3.
4.
5.

Choose null and alternative hypotheses

Choose a test statistic, T,

Choose a test level, o

Determine rejection region

Reject if T, in rejection region, fail to reject otherwise

9/35



Null and alternative hypotheses

+ The null hypothesis is the hypothesis we want to test.

« This is usually “no effect/difference/relationship.”
+ We denote this hypothesis as H, : & = 6.
* H,: Social pressure doesn't affect turnout (H, : T = 0)

+ The alternative hypothesis is the complement of the null hypothesis

+ Usually, “there is a relationship/difference/effect.”
+ We denote this as H, : 8 + 6.
* H,: Social pressure affects turnout (H1 :T #0)

+ One-sided vs. two-sided alternatives:

+ One-sided: H, : 8 > 6, or H, : 8 < 8,

- Two-sided: H, : 8 + 6,

+ Two-sided much more common, one-sided involves ignoring evidence in
one direction.

10/35



General framework

+ Hypothesis tests choose to reject or not reject the null hypothesis
based on the observed data.

- Statistical thought experiments: Assume we know (part of) the true DGP.
- Rejection based on a test statistic, 7, = T(Y;,..., Y,).

n

+ Will help us adjudicate between the null and the alternative.
- Typically: larger values of T, ~+ null less plausible.
- Atest statistic is a r.v.

- Intuitively, reject null of no effect when |Y — X] is large.
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- Rejection region R is the region of the sample space in which we reject
the null.

- If our data is in R, we reject H,
- If our data is not in R, we retain/fail to reject H,.

+ Regions often based on the test statistic. For scalar hypotheses:

+ One-sided tests: T, > ¢
+ All the samples of size n leading to a T, greater than c.
- Two-sided tests: |T,| > ¢

+ The c here is the critical value that defines the rejection region, C:

+ One-sided C = {t: t > c}, two-sided: C = {¢t: |t| > c}.
- Rejectwhen T, € C.
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Type 1 and Type Il errors

Hy True H, False
Retain H, | Awesome! Type Il error
Reject H, | Type | error | Good stuff!

- Typel error: rejecting the null hypothesis when it is in fact true.
+ No treatment effect, but we reject the null

- Type Il error not rejecting the null hypothesis when it is false.
+ Treatment effect is nonzero, but we cannot reject the null

- Consequences depend the context:

- Treatment effects: false discovery (type I) vs undetected finding (type II).
- Medical diagnosis: false positive (type 1) vs false negative (type I1).
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Features of a test

+ Good tests: reject null when they should, retain when they shouldn't.

+ Power function of a test: probability of rejection as a function of #:

1(8) = P (Reject Hy | 6) = P (T, € C | 6)

+ Hypotheticals! if we knew 8, what is the probability of rejecting the null?
+ The power of a test against an alternative 6, € H, is m(8,)
+ We want to maximize power against alternative

- Size of a test is the probability of a Type | error:

m(6,) = P (Reject H, | 8,)

- Size of two-sided test: P(|T,| > c | 8y)
- Size of one-sided test: P(T, > c | 8;)
+ We want to minimize the size of a test.
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Test statistic example

+ What is an example of a test statistic and how we know its distribution?
By the CLT, the difference in means is asymptotically normal:

T,—T

se[7,]

% N (0,1)

« Under the null of H, : T = E[Y;] — E[X;] = 0, then asymptotically:

T, = 1 % n(0,1)
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Size-power trade-off

Size Power

Retain Reject Retain Reject

P(Tn | 90)

6o c 6 Bic
T under the null hypothesis T under an alternative
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Size-power trade-off

Size Power

Retain Reject Retain Reject

P(Tn | 90)

6y c 6o 6 ¢
T under the null hypothesis T under an alternative
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Size-power trade-off

Size Power

Retain Reject Retain

P(To | 6o)
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T under the null hypothesis T under an alternative
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Controlling the size of a test

+ Generally cannot simultaneously reduce both types of errors.
- Classical Neyman-Pearson approach: fix the rate of Type | errors.
- Significance level a is researcher-selected maximum size of a test.

- Convention in social sciences is a = 0.05, but nothing magical there
+ Particle physicists at CERN use o ~ 15556

+ Frequentist justification: in the long run, at most 100 x a% decisions
will be Type I errors

- Fisher (and Bayesians) didn't like this: relied on repeated sampling.
« Still the dominant approach in the social sciences.
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Size

:
Retain | Reject
:

0o c
T under the null hypothesis

« How to select ¢ to make o = 0.05?

« Let Gy(t) = P(T, < t|8,) be the c.d.f. under the null.
- We want to find c that puts o probability in the tail: 1 — Gy(c) = a.
+ Use the quantile function: c = G, (1 — o)

* If Gy ~ N(0,1) and a = 0.05, then ¢ = ®~1(0.95) = 1.645
+ Reject null if T, > 1.645, fail to reject if T, < 1.645
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Two-sided rejection region

1
Reject | Retain Reject

T under the null hypothesis

- What's the rejection region |T,| > c if o = 0.05?
+ For symmetric G, and given c, we have test size m(8;) = 2(1 — Gy(c))
- Critical values: ¢ = G;1(1 — a/2)

+ Find c such that /2 is in each tail
+ For Gy ~ NV (0,1) and a = 0.05, then ¢ = 1.96

21/35



Final hypothesis test

1. Hypotheses: Hy: 7 =0vs. H; : T #0
2. Test statistic: T, = T,/Se[T,]
3. Use a = 0.05

4. Rejection region is |T,| > 1.96.
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Social pressure test

- Calculate test statistic for social pressure mailers:

neigh_var <- var(social$voted[social$treatment == "Neighbors”])
neigh_n <- sum(social$treatment == "Neighbors”)
civic_var <- var(social$voted[social$treatment == "Civic Duty”])
civic_n <- sum(social$treatment == "Civic Duty”)

se_diff <- sqrt(neigh_var/neigh_n + civic_var/civic_n)

(0.378-0.315)/se_diff

## [1] 18.3

T,| =18.343 > 1.96 ~~ REJECT!
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t-test/Wald test

 Consider any asymptotically normal estimator 6 for parameter 6.
+ Consider testing H, : 6 = 6, vs. H, : 8 # 6.

+ A size-o t-test (or Wald test) rejects H, when |T,| > c where

+ Critical value c calculated in the exact same way as above.
« ForZ ~N(0,1), let c = z,, such that P(Z < z,) = 1 — /2.

+ Size of the test converges to the nominal size as n — oc:

PO T, > 2512 | 65) =
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3/ p-values



Why p-values?

« Just rejecting or not rejecting the null hypothesis is not too informative.

- We rejected null of no population diff-in-means (H, : 7 = 0) at a = 0.05.
- What about all the other levels like o = 0.01?

- Alternative: p-values are the probability of observing T, or more
extreme under Hj:

J1=6Gy(Ty) if one-sided
2(1—Gy(|T,|)) iftwo-sided

+ Interpretation: smallest size a at which a test would reject the null.

+ Can immediately assess tests of all sizes, no need for strict cutoffs.
+ A continuous measure of evidence against the null.
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Calculate the p-value

« Social pressure test statistic, t,,; = 18.5.

+ How likely would it be to get a test statistic this extreme or more
extreme if there were no treatment effect?

P(|T,| > 185 | 7,) = P(T, > 185 | 7)) + P(T, < —18.5 | 7))
=2xP(T,<—185]| 1)

+ Use the pnorm( ) function:
2 % pnorm(-18.5)

## [1] 2.06e-76
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Be careful with p-values

+ Low p-value ~~ data unlikely given the null ~~ evidence against the
null.

+ p-values are not:

+ Anindication of a large substantive effect
+ The probability that the null hypothesis is false
+ The probability that the alternative hypothesis is true

- p-values are just a transformation of the test statistic to the [0, 1] scale.

+ p-hacking controversy: not about p-values per se, but about
significance cutoffs
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4] Power Analyses



TABLE 2. Effects of Four Mail Treatments on Voter Turnout in the August 2006 Primary
Election

Experimental Group

Control Civic Duty Hawthorne Self Neighbors
Percentage Voting 29.7% 31.5% 32.2% 34.5% 37.8%
N of Individuals 191,243 38,218 38,204 38,218 38,201

+ Why use sample sizes of 38,000 for each treatment condition?

- Choose the nto ensure you can reject the null under a hypothesized
effect size.

+ Small effect sizes (half percentage point) will require huge n
- Large effect sizes (10 percentage points) will require smaller n

« If we fail to reject a null hypothesis, two possible states of the world:

+ Nullis true (no treatment effect)
+ Null is false (there is a treatment effect), but test had low power.
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- Power analysis: evaluate the power function for various sample sizes.

+ Prob. of rejecting different possible effects at different sample sizes.
+ Can be done before the experiment to plan for sample sizes

+ Easiest to see in a one-sided test of H, : ¢ = 0.

- Let T, = 6/5¢[6] be the test statistic and the power function is:

,(8) =P[T, > c| 9

« If T, is approximately ' (0,1) under the null, then under H; : & = 6,

Tn'iN</\elAvl) e Trn(el)_l_q)(c_/\el'*)
se[6] se[f]
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Power graph

Retain

P(Tn | eO)

T under an alternative
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Power graph
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Exact tests under the normal model

Asymptotics are approximations. Can we ever get exact inferences at
any sample size?

Assume parametric model: X, ..., X, are i.i.d. samples from N(u,o?)

Under null of H, : u = u,, we have

yn — Mo

= ~

" s,/vn

n—1

- Student’s t-distribution with n — 1 degrees of freedom.

Null distribution is t so we use quantiles of t for critical values.

+ For one-sided test c = G; (1 — a) but now G, is t with n — 1 df.
- Basically: use qt () instead of gnorm( ) for critical values.
+ Asymptotically equivalent to using the normal, but more conservative
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