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Where are we? Where are we going?

- Before: learned about CEFs and linear projections in the population.
+ Last time: OLS estimator, its algebraic properties.

+ Now: its statistical properties, both finite-sample and asymptotic.
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Acemoglu, Johnson, and Robinson (2001)
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Sampling distribution of the OLS estimator

+ OLS is an estimator—we plug data into and we get out estimates.

Sample L {(YlaXl% 000 §) (anxn)}

Sample 2: {(Y1, X1), ..., (Y, X;)} |

g OoLS
sample k —1: {(Yy, X)), .., (Y,, X,)} —

Sample k: {(Yy,X1), -, (Y, X))} -/

(B(h Bl)l

/') (B07B1)2

> Gofix
B a5

+ Just like the sample mean or sample difference in means
+ Has a sampling distribution, with a sampling variance/standard error.
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Simulation procedure

+ Let's take a simulation approach to demonstrate:

+ Pretend that the AJR data represents the population of interest
+ See how the line varies from sample to sample

1. Draw a random sample of size n = 30 with replacement using
sample()

2. Use lm() to calculate the OLS estimates of the slope and intercept

3. Plot the estimated regression line
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Population Regression
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Randomly sample from AJR

12 4

Log GDP per capita

Log Settler Mortality

7/39



+ We want finite-sample guarantees about our estimates.
+ Unbiasedness, exact sampling distribution, etc.
+ But finite-sample results come at a price in terms of assumptions.

+ Unbiasedness: CEF is linear.
+ Exact sampling distribution: normal errors.

« Asymptotic results hold under much weaker assumptions, but require
more data.

+ OLS consistent for the linear projection even with nonlinear CEF.
+ Asymptotic normality for sampling distribution under mild assumptions.

+ Focus on two models:

- Linear projection model for asymptotic results.
- Linear regression/CEF model for finite samples.
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1/ Linear projection model
and Large-sample
Properties



Linear projection model

- We’'ll start at the most broad, fewest assumptions

Linear projection model

1. For the variables (Y, X), we assume the linear projection of Y on X is

defined as:
Y=XB+e

E[Xe] = 0.

2. The design matrix is invertible, so E[X;X/] > 0 (positive definite).

+ Linear projection model holds under very mild assumptions.

+ Remember: not even assuming linear CEF!
+ Implies coefficients are B = (E[XX'])E[XY]

+ What properties can we derive under such weak assumptions?
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estimation error

+ OLS estimates are the truth plus some estimation error.
+ Most of what we derive about OLS comes from this view.

+ Sample means in the estimation error follow the law of large numbers:

—ZXX’—HEXX] Qux %ine,-i)[E[Xe]zo

i=1

+ Qxx Is invertible by assumption, so by the continuous mapping

theorem:
-1

1 <& A
<n§jx,-x;) SOk = BoB+Qxk-0=B,
i=1
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Consistency of OLS

Theorem (Consistency of OLS)

Under the linear projection model and i.i.d. data, 8 is consistent for B.

« Simple proof, but powerful result.

- OLS consistently estimates the linear projection coefficients, B.

+ No guarantees about what the g; represent!
+ Best linear approximation to E[Y | X].
+ If we have a linear CEF, then it’s consistent for the CEF coefficients.

« Valid with no restrictions on Y: could be binary, discrete, etc.

- Not guaranteed to be unbiased (unless CEF is linear, as we'll see...)
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Central limit theorem, reminders

+ We'll want to approximate the sampling distribution ofﬁ. CLT!

+ Consider some sample mean of i.i.d. data: n—* Z;’:lg(x,-). We have:

E “ Zn:g(xi)] = E[g(X;)] var [,17 Z":g(xf)} _ var[g(X;)]

n

« CLT implies:
Jn (rl] z":g(x,) - [E[g(X,-)]) 5 (0, var(g(X,)])
i=1

- If E[g(X;)] = 0, then we have
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Standardized estimator

=l

ﬁ(ﬁ—p> = (ii&&’) (\}E ixiei)

- Remember that (n* 7 | X;X/)~? it Qxx SO we have
2 1 <&
\/E = ~ Q71 — X,-e,
(p p) XX \/E ;:1:

- What about n~ /237" | X,e,? Notice that:

n13" | X;e is a sample average with E[X;e,] = 0.
+ Rewrite as /n times an average of i.i.d. mean-zero random vectors.

. Let Q = E[e?X;X!] and apply the CLT:

(IZX )-mron)
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Asymptotic normality

Theorem (Asymptotic Normality of OLS)

Under the linear projection model,

Vi (B—B) 5 N (0,Vp),

where,
Vg = QekQQxk = (E[XX/]) " E[e2X,X;]] (E[X,X/])""

- Bis approximately normal with mean g and variance QxkQQyk/n
* Vg =Vg/n is the asymptotic covariance matrix of g
+ Square root of the diagonal of Vﬁ = standard errors forﬁj

+ Allows us to formulate (approximate) confidence intervals, tests.

14 /39



2] OLS variance estimation



Estimating OLS variance

~ d
Vn(B—B) = N(0,Vp),  Vp=QxQQxk
« Estimation of V uses plug-in estimators.

» Replace Qux = E[X;X/] with Qex = n ' 37, X, X] = X'%/n.
- Replace @ = E[eX,X/] with @ = n" ' Y7 | &X,X

+ Putting these together:

V, = (lx'x)il lzn:?x X/ (5@%)
[3_ n n =1 i i n
41 1
— xR =S ex x| (%
oo™ (33 aex ) o

i=1

—1

+ Possible to show this is consistent: \A/p 4 V.

+ Square root of the diagonal of \A/ﬁ = n—lvp:
heteroskedasticity-consistent (HC) SEs (aka “robust SEs”)
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Homoskedasticity

Assumption: Homoskedasticity

The variance of the error terms is constant in X, E[e? | X] = 0?(X) = o2

Heteroskedastic Homoskedastic
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Consequences of homoskedasticity

- Homoskedasticity implies E[e?X,X!] = E[e?]E[X;X!] = 0>Qxx

- Simplifies the expression for the variance of \/n(8 — B):

V;l;m = QxxE[€7]QxxQxx = 0°Qxx

- Estimated variance of B under homoskedasticity

-1
1 = = 1 1< 1

2 = E 2 m_— —g2 75 X! = s2 (X

= 2 € V‘3 P (”,—_1 X,X,) 5% (X'K)

N a P = 5 9
+ LLN implies s2 — o2 and so nv};m is consistent for V};’“

17/39



Notes on skedasticity

+ Homoskedasticity: strong assumption that isn’t needed for consistency.
-+ Software: almost always reports \7}’“ by default.
- e.g. lm() in R or reg in Stata.

- Separate commands for HC SEs \7ﬁ

+ Use {sandwich} package in R or ,robust in Stata.

o If \7}2‘" and \A/ﬁ differ a lot, maybe check modeling assumptions (King and
Roberts, PA 2015)

« Lots of “flavors” of HC variance estimators (HCO, HC1, HC2, etc).

+ Mostly small, ad hoc changes to improve finite-sample performance.
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library(sandwich)

mod <- 1m(logpgp95 ~ avexpr + lat_abst + meantemp, data = ajr)

vcov(mod)

#it (Intercept) avexpr lat_abst meantemp
## (Intercept) 0.9079 -0.040952 -0.537463 -0.023246
## avexpr -0.0410 0.004162 -0.000778 0.000605
## lat_abst -0.5375 -0.000778 0.867588 0.016717
## meantemp -0.0232 0.000605 0.016717 0.000705
sandwich: :vcovHC(mod, type = "HC2")

## (Intercept) avexpr lat_abst meantemp
## (Intercept) 0.9764 -0.05735 -0.29548 -0.024639
## avexpr -0.0573 0.00538 -0.00358 0.001107
## lat_abst -0.2955 -0.00358 0.60821 0.008792

## meantemp -0.0246 0.00111 0.00879 0.000706

19/39



Inference with OLS

« Inference is basically the same as any asymptotically normal estimator.
- Let §E(/§j) be the estimated SE for,éj.
+ Square root of jth diagonal entry: [\T}jj

+ Hypothesis test of B; = by:

.. B—h L 3,
general t-statistic = ’Q “usual” t-statistic = A‘Bﬁ
56(B)) se(B))

+ Use same critical values from the normal as usual z,, = 1.96.

+ 95% (asymptotic) confidence interval for ﬁj:

[B; —1.96 58(B)), B; +1.96 56(B))]

« Software often uses t critical values instead of normal (we'll see why).
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Inference with Tmtest: :coeftest()

library(lmtest)

mtest::coeftest(mod)

#H

## t test of coefficients:

#H#

it Estimate Std. Error t value Pr(>[t|)

## (Intercept) 6.9289 0.9528 7.27 1.2e-09 x**
## avexpr 0.4059 0.0645 6.29 5.1e-08 x**
## lat_abst -0.1980 0.9314 -0.21 0.832

## meantemp -0.0641 0.0266 -2.41 0.019 *
Hit ---

## Signif. codes:

## 0 'xxx' 0.001 '+«x' 0.01 '<' 0.05 '.' 0.1 ' ' 1

oeftest(mod, vc vcovHC(mod, type

#it

## t test of coefficients:

#it

## Estimate Std. Error t value Pr(>|tl)

## (Intercept)  6.9289 0.9881 7.01 3.3e-09 **x
## avexpr 0.4059 0.0733 5.53 8.6€-07 x*x
## lat_abst -0.1980 0.7799 -0.25 0.801

## meantemp -0.0641 0.0266 -2.41 0.019 *
## ---

## Signif. codes:

## 0 'xxx' 0.001 '+x' 0.01 '+' 0.05 '.' 0.1 ' "1
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3/ Inference for Multiple
Parameters



Inference for interactions

m(x,z) = By + XBy + ZB, + XZPB;,

- Partial or marginal effect of X at Z: 272 2 — B, + 2,
+ Estimate it by plugging in the estimated coefficients: Bm(x 2 — B, + 2B,

+ What if we want the variance of this effect for any value of Z?

() B+ 7] = WAL+ IR + 2200 B

+ Use the estimated covariance matrix:

o (0m(x,2)\ o " .
v ( Ox ) B Vﬁ1 Tz Vé3 + 22\/&1’5”3
+ V;, is the diagonal entry of V; for B
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Visualizingviamarginaleffects

int_mod <- lm(logpgp95 ~ avexpr * lat_abst + meantemp, data = ajr)
coeftest(int_mod)

##

## t test of coefficients:

##

#it Estimate Std. Error t value Pr(>|t])
## (Intercept) 6.9864 0.9273 7.53 5e-10
## avexpr 0.5491 0.0941 5.84 3e-07
## lat_abst 5.8152 3.0791 1.89 0.0642
## meantemp -0.1048 0.0326 =321 0.0022
## avexpr:lat_abst -0.9095 0.4451 -2.04 0.0458
##

## (Intercept) *kok

## avexpr * Kk

## lat_abst

## meantemp * %

## avexpr:lat_abst =

Ht ---

## Signif. codes:

## 0 "*xx' 0.001 '+x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
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library(marginaleffects)
plot_slopes(int_mod, variables ! r”, condition = "lat_abst”)
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Tests of multiple coefficients

m(X,Z) = By + XPy + ZB, + XZB;
+ What about a test of no effect of X ever? Involves 2 coeffcients:

Hy:Bi=B;3=0

« Alternative: H, : B; #0o0rpB; #0
+ We would like a test statistic that is large when the null is implausible.

- What about 82 + 822
- Distribution depends on the variance/covariance of the coefficients.
-+ Need to normalize like the t-statistic.
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Alternative test for one coefficient

* Usually t-test of H, : B; = b, based on the t-statistic:

B~ by
se(B)

=

+ Reject when |t| > ¢ for some critical value ¢ from the standard normal.

- Equivalent test based rejects when t? > ¢?

7Y

2 (réf_bO>2 ”(/gf_b0)2

d Q Q o o
- Because t — NV(0,1), we'll have t? converging to a x7 distribution

« Reminder: x; is the sum of k squared standard normals.
- Could get the critical value for t? directly from x3.
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Rewriting hypotheses with matrices

+ We can rewrite the null hypothesis as H, : LB = c where,

+ L has g rows or restriction and k + 1 columns (one for each coefficient)
- Estimated version of the constraint: LB

+ By the Delta method, under the null hypothesis we have
Vi (LB —LB) % N(0,L'V,L).
- In this case:
ﬁl d 0
vl |5 - N
Bs 0

« If this covariance matrix where identity, then these would be standard
normal and B? + 33 would be x3 under the null

Velny  [Velug
[Velizy [Vl

)
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Wald statistic

+ Under the null, v/a (LB — c) 5 N(0,L'VyL)
- (Lﬁ — c)’(Lﬁ —c) is the squared deviations from the null.

+ Problem: doesn't account for variance/covariance of the estimated
coefficients.

- Wald statistic normalize by the covariance matrix:
P ’ = —1 P
W=n(LB—c) (L'VgL) (LB—c)

+ Similar to dividing by the SE for the t-test
- Squared distance of observed values from the null, weighted by the
distribution of the parameters under the null

28/39



Weighting by the distribution




W=n(LB—c) (LVsL) (LB—c)

+ Asymptotically under the null W 4 X¢2; where g is rows of L
+ g isthe number of linear restrictions in the null

+ Wald test: reject when W > w,, where P(W > w,) = o under the null.
+ Use Xi distribution for critical values, p-values

« Typical software output: F-statistic F = W /q

+ p-values and critical values come from F distribution with g and

n—k—1dfs. ,
+ Asn— oo, F, ., ;1 — x5 S0 asymptotically similar to Wald under

homoskedascity (slightly more conservative).
+ No justification for F test under heteroskedasticity.
« “Usual” F-test reports test of all coef = 0 except intercept (pointless?)
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Wald test steps

1. Choose a Type | error rate, a.
- Same interpretation: rate of false positives you are willing to accept
2. Calculate the rejection region for the test (one-sided)

- Rejection region is the region W > w, such that P(W > w,) = a
+ We can get this from R using the qchisq() function

3. Reject if observed statistic is bigger than critical value

+ Use pchisq() to get p-values if needed.
+ When applied to a single coefficient, equivalent to a t-test.

« Use packages like {Imtest} or {clubSandwich} inR.
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Wald testin Lmtest

restricted <- lm(logpgp95 ~ lat_abst + meantemp, data = ajr)

Imtest::waldtest(restricted, int_mod, test = "Chisq”,
vcov = vcovHC)

## Wald test

#t

## Model 1: logpgp95 ~ lat_abst + meantemp

## Model 2: logpgp95 ~ avexpr * lat_abst + meantemp
#it Res.Df Df Chisq Pr(>Chisq)

Ht 1 57

#t 2 55 2 34.2 3.7e-08 **x*

Ht ---

## Signif. codes:

## 0 "*xx' 0.001 'xx' 0.01 '+' 0.05 '.' 0.1 ' ' 1
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Multiple testing

* Separate t-tests for each B;: a of them will be significant by chance.

« Illustration:

+ Randomly draw 21 variables independently.
+ Run a regression of the first variable on the rest.

+ By design, no effect of any variable on any other.
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Multiple test example

noise <- data.frame(matrix(rnorm(2100), nro 100, ncol = 21))
summary(lm(noise))

H#

## Coefficients:

## Estimate Std. Error t value Pr(>[tl)
## (Intercept) -0.028039 0.113820 =25 0.8061
## X2 -0.150390 0.112181 -1.34 0.1839
## X3 0.079158 0.095028 0.83 0.4074
#H# X4 -0.071742 0.104579 -0.69 0.4947
## X5 0.172078 0.114002 il 5il 0.1352
## X6 0.080852 0.108341 0.75 0.4577
## X7 0.102913 0.114156 0.90 0.3701
## X8 -0.321053 0.120673 -2.66 0.0094 **
## X9 -0.053122 0.107983 -0.49 0.6241
## X10 0.180105 0.126443 1.42 0.1583
## X11 0.166386 0.110947 1.50 0.1377
## X12 0.008011 0.103766 0.08 0.9387
## X13 0.000212 0.103785 0.00 0.9984
## X14 -0.065969 0.112214 SORSE) 0.5583
## X15 -0.129654 0.111575 =il 0.2487
## X16 -0.054446 0.125140 -0.44 0.6647
## X17 0.004335 0.112012 0.04 0.9692
## X18 -0.080796 0.109853 -0.74 0.4642
## X19 -0.085806 0.118553 -0.72 0.4713
## X20 -0.186006 0.104560 -1.78 0.0791 .
## X21 0.002111 0.108118 0.02 0.9845
## ---

## Signif. codes:

## 0 'xxx' 0.001 '+x' 0.01 '+' 0.05 '.' 0.1 ' "1
#i#

## Residual standard error: 0.999 on 79 degrees of freedom
## Multiple R-squared: 0.201, Adjusted R-squared: -0.00142

## F-statistic: 0.993 on 20 and 79 DF, p-value: 0.48
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Multiple testing gives false positives

+ 1 out of 20 variables significant at o = 0.05

- 2 out of 20 variables significant at o = 0.1

« Exactly the number of false positives we would expect.

+ But notice the F-statistic: the variables are not jointly significant

- Bonferroni correction: use p-value cutoff a/m where m is the number
of hypotheses.

+ Example: 0.05/20 = 0.0025
- Ensures that the family-wise error rate (probability of making at least 1
Type | error) is less than a.
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4] Linear Regression
Model and Finite-sample
Properties



Standard linear regression model

+ Standard textbook model: correctly specified linear CEF

+ Designed for finite-sample results.
Assumption: Linear Regression Model

1. The variables (Y, X) satisfy the the linear CEF assumption.

Y=XB+e
Ele | X] = 0.

2. The design matrix is invertible E[XX’] > 0 (positive definite).

« Basically this assumes the CEF of Y given X is linear.

+ We continue to maintain {(Y;, X;)} are i.i.d.
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Properties of OLS under linear CEF

« Linear CEFs imply stronger finite-sample guarantees:
1. Unbiasedness: £ [8 | x| = B

2. Conditional sampling variance: let o7 = E[e? | X|]

VB | %] = (Z&xx) )

« Useful when linearity holds by default (discrete X in experiments, etc)
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Linear CEF under homoskedasticity

« Under homoskedasticity, we have a few other finite-sample results:
3. Conditional sampling variance: V[ | %] = o2 (X'%)""
4. Unbiased variance estimator: £ [V°[8] | X] = o2(X'%)

5. Gauss-Markov: OLS is the best linear unbiased estimator of B (BLUE). If
B is a linear estimator,

VIB | K] > VIB| %] = o2 (X'%)"

-+ For matrices, A > B means that A — B is positive semidefinite.

+ A matrix C is p.s.d. if x¥’Cx > 0.
+ Upshot: OLS will have the smaller SEs than any other linear estimator.
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Normal regression model

+ Most parametric: Y ~ N (X'B,c2).

+ Normal error model since e = Y — X'B ~ N (0,02).

Rarely believed, but allows for exact inference for all n.

o (,éj —ﬁj)/§é([§j) follows a t distribution with n — k degrees of freedom.
« F statistics follows F distribution exactly rather than approximately.

- Software often implicitly assumes this for p-values.

+ With reasonable n, asymptotic normality has the same effect.
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