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Where are we? Where are we going?

+ We've defined random variables and their distributions.
- Distributions give full information about the probabilities of an r.v.

+ Today: begin to summarize distributions with a few numbers.
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How can we summarize distributions?

- Probability distributions describe the uncertainty about r.v.s.
+ Can we summarize probability distributions?

+ Question: What is the difference between these two p.m.f.s? How might
we summarize this difference?

Bin(10, 0.5) Bin(10, 0.25)
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Goals for summarizing

1. Central tendency: where the center of the distribution is.
« We'll focus on the mean/expectation.
2. Spread: how spread out the distribution is around the center.
- We'll focus on the variance/standard deviation.
+ These are population parameters so we don’t get to observe them.

- We won't get to observe them...
+ but we'll use our sample to learn about them
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Two ways to calculate averages

+ Calculate the average of: {1,1,1,3,4,4,5,5}

1+14+1+3+4+4+5+5
. =

8

+ Alternative way to calculate average based on frequency weights:

3 1 2 2
1x = —+4x - 5=
><8+3><8+ ><8+5><8 3

+ Each value times how often that value occurs in the data.
 We'll use this intuition to create an average/mean for r.v.s.
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Expectation

Definition

The expected value (or expectation or mean) of a discrete r.v. X with
possible values, x;, x,, ... IS

- Weighted average of the values of the r.v. weighted by the probability
of each value occurring.

+ E[X] is a constant!

+ Example: X ~ Bern(p), then E[X] = 1p+ 0(1 — p) = p.

« If X and Y have the same distribution, then E[X] = E[Y].
- Converse isn't true!
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Example - number of treated units

+ Randomized experiment with 3 units. X is number of treated units.

X | Px(x)
01 1/8
1| 3/8
2 | 3/8
3| 1/8
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Example - number of treated units

+ Randomized experiment with 3 units. X is number of treated units.

X | Px(x)
01 1/8
1| 3/8
2 | 3/8
3| 1/8

+ Calculate the expectation of X:

!
=
[
1~
=
>
[
X
S~—

=1
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Example - number of treated units

+ Randomized experiment with 3 units. X is number of treated units.

| px(x) | xpx(x)

X

0| 1/8 0

1| 3/8 3/8
2 | 3/8 6/8
3| 1/8 3/8

+ Calculate the expectation of X:

=0-P(X=0)4+1-P(X=1)+2-P(X =2) +3-P(X =3)
1 3 3 1
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Example - number of treated units

+ Randomized experiment with 3 units. X is number of treated units.

| px(x) | xpx(x)

X

0| 1/8 0
1| 3/8 3/8
2 | 3/8 6/8
3| 1/8 3/8

+ Calculate the expectation of X:

—0-P(X=0)+1-P(X=1)42-P(X =2)+3-P(X =3)
1 3 3 112

—0.241-242.243.2=-2_1

0-g+1-5+2.2+3.2="2=15
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Expectation as balancing point

Bin(10, 0.5) Bin(10, 0.25)
030 030 -
0.25 - 0.25 -
0.20 4 0.20
2015 - 2015 A

010 010 -

0.05 - 0.05 ‘

0.00 -'® l | | l ° 0.00 - I 0 o o o
T T T T T 1
0 2 i 4 6 8
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Properties of the expected value

- Often want to derive expectation of transformations of other rv.s
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Properties of the expected value

- Often want to derive expectation of transformations of other rv.s
+ Possible for linear functions because expectation is linear:

E[X + Y] =E[X] + E[Y]
ElaX] = aE[X] if ais a constant

+ True even if X and Y are dependent!

+ But this isn’t always true for nonlinear functions:

« E[g(X)] # g(E[X]) unless g(-) is a linear function.
« E[XY]# E[X]E[Y] unless X and Y are independent.
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Expectation of a binomial

« Let X ~ Bin(n, p), what's E[X]? Could just plug in formula:

E[X] = Z k(Z) pk(1— p)rk =22
k=0
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Expectation of a binomial

« Let X ~ Bin(n, p), what's E[X]? Could just plug in formula:
U n
EX]=) k K1—p)nk=12
[X] kZ:O <k>P (1-p)

+ Use the story of the binomial as a sum of n Bernoulli X; ~ Bern(p)

X:X1+...+Xn

+ Use linearity:

E[X] = E[X; + -+ X,] = E[X{] + - + E[X,] = np
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Expectation of the sample mean
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Expectation of the sample mean

. Let Xi,..., X, be identically distributed with E[X;] = u.
- Define the sample mean to be X, = n"1 3" X,.
« Xisarwv!

+ We can find the expectation of the sample mean using linearity:

=[E[,112n:X, Z[E fn,u u
i=1

+ Intuition: on average, the sample mean is equal to the population
mean.
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Monotonicity of expectations

+ Expectations don't have to be in the support of the data.
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Monotonicity of expectations

+ Expectations don't have to be in the support of the data.
+ X ~ Bern(p) has E[X] = p which isn't 0 or 1.
- But it must be between the highest and lowest possible value of an r.v.

« IfP(X >c¢)=1,then E[X] > c.
« IfP(X <c¢)=1,thenE[X] <c.

- Useful application of linearity: expectation is monotone.

 If X > Y with probability 1, then E(X) > E(Y).
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St. Petersburg Paradox

-+ Game of chance: stranger pays you $2X where X is the number of flips
with a fair coin until the first heads.

+ Probability of reaching X = k is:

P(X = k) = P(TyA T, 1 Tyy ) = PTP(T,)  P(TiLP(H,) = op

+ How much would you be willing to pay to play the game?

- Let payout be Y = 2%, we want E[Y]:
(o] 1 [ee]
E[Y] :szsz =) 1=00
k=1 k=1

- Two ways to resolve the “paradox”:

+ No infinite money: max payout of 2*° (around a trillion) ~ E[Y] = 41
- Risk avoidance/concave utility U = Y¥/2 ~ E[U(Y)] ~ 2.41

13/27



Undefined expectations*

+ We saw E[X] can be infinite, but it can also be undefined.
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-+ Example: X takes 2 and —2k each with prob 2=+,

szzkl 22k2k1 i _i%:
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Undefined expectations*

+ We saw E[X] can be infinite, but it can also be undefined.

-+ Example: X takes 2 and —2k each with prob 2=+,

22k2 k—1 22k2 k=1 _ i i

k=1 k=1 k=1

I\J\»—l
l\)\l—\

- Often, both of these are assumed away by assuming E[|X|] < co which
implies E[X] exists and is finite.
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Indicator variables/fundamental bridge

- The probability of an event is equal to the expectation of its indicator:
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Indicator variables/fundamental bridge

- The probability of an event is equal to the expectation of its indicator:

+ Fundamental bridge between probability and expectation

+ Makes it easy to prove probability results like Bonferroni’s inequality

P(A U~ UA,) < P(A;) + -+ P(4,)

+ Use the fact that [(A; U--UA,) < [(A;) + -+ 1(A,) and then take
expectations.

15/27



Using indicators to find expectations

+ Suppose we are assigning n units to k treatments and all possibilities
equally likely. What is the expected number of treatment conditions
without any units?
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number of empty conditions.
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Using indicators to find expectations

+ Suppose we are assigning n units to k treatments and all possibilities
equally likely. What is the expected number of treatment conditions
without any units?

+ Use indicators! /; = 1if jth condition is empty. So /; + - + I, is the
number of empty conditions.

E[/;] = P(cond j empty)
({unit 1 notin cond j} N---N {unit n not in cond j})

P
P({unit 1 not in cond j})---P({unit n not in cond j})
(-3

+ Thus, we have E [Zj /j] =k(1—1/k)".

16/ 27



&4 \ariance



- The variance measures the spread of the distribution:

VIX] = E[(X — E[X])?]

17/27



- The variance measures the spread of the distribution:

VIX] = E[(X — E[X])?]

+ Could also use E[|X — E[X]|] but more clunky as a function.

17/27



- The variance measures the spread of the distribution:

VIX] = E[(X — E[X])?]

+ Could also use E[|X — E[X]|] but more clunky as a function.

+ Weighted average of the squared distances from the mean.

17/27



- The variance measures the spread of the distribution:

VIX] = E[(X — E[X])?]

+ Could also use E[|X — E[X]|] but more clunky as a function.

+ Weighted average of the squared distances from the mean.

« Larger deviations (+ or —) ~» higher variance

17/27



- The variance measures the spread of the distribution:
VIX] = E[(X — E[X])?]

+ Could also use E[|X — E[X]|] but more clunky as a function.

+ Weighted average of the squared distances from the mean.

« Larger deviations (+ or —) ~» higher variance

- The standard deviation is the (positive) square root of the variance:

17/27



- The variance measures the spread of the distribution:
VIX] = E[(X — E[X])?]

+ Could also use E[|X — E[X]|] but more clunky as a function.

+ Weighted average of the squared distances from the mean.

« Larger deviations (+ or —) ~» higher variance

- The standard deviation is the (positive) square root of the variance:

+ Useful equivalent representation of the variance:

VIX] = E[X?] — (E[X])?

17/27



LOTUS

+ How do we calculate E[X?] since it's nonlinear?
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+ How do we calculate E[X?] since it's nonlinear?

Defintion

The Law of the Unconscious Statistician, or LOTUS, states that if g(X) is a
function of a discrete random variable, then

Elg(X)] = g(x)P(X = x)

+ Example: E[X?] where X ~ Bin(n, p).
- n
EX] =Y k(7 )pk(L—p)m*
X] kZ:O (k>p (1-p)

E[X?] = ; k? (Z) pk(L—p)"*
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Example - number of treated units

+ Use LOTUS to calculate the variance for a discrete r.v.:
k

VIX] =) (x5 — EIX])*P(X = x))

=1

x | px(x)
0| 1/8
11]3/8
2 | 3/8
3| 1/8

19/27



Example - number of treated units

+ Use LOTUS to calculate the variance for a discrete r.v.:
k

VIX] =) (x5 — EIX])*P(X = x))

Jj=1

x | px(x)
0| 1/8
11]3/8
2 | 3/8
3| 1/8

« Let's go back to the number of treated units to figure out the variance
of the number of treated units:

19/27



Example - number of treated units

+ Use LOTUS to calculate the variance for a discrete r.v.:
k

VIX] =) (x5 — EIX])*P(X = x))

Jj=1

x | px(x) | x—E[X]
0| 1/8 -1.5
11]3/8 -0.5

2 | 3/8 0.5

3| 1/8 1.5

+ Let’s go back to the number of treated units to figure out the variance

of the number of treated units:
k

VIX] = (x5 — E[X])px ()

Jj=1

19/27



Example - number of treated units

+ Use LOTUS to calculate the variance for a discrete r.v.:
k

VIX] =) (x5 — EIX])*P(X = x))

Jj=1

x| px(x) | x—EIX] | (x—E[X])?
0| 1/8 15 2.25
11]3/8 -0.5 0.25
2 | 3/8 0.5 0.25
3| 1/8 1.5 2.25

+ Let’s go back to the number of treated units to figure out the variance

of the number of treated units:
k
VIX] = (x5 — E[X])px ()
j=1
= (—1.5)% x % + (—0.5)2 x %Jro.52 X g +1.5% x %
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Example - number of treated units

+ Use LOTUS to calculate the variance for a discrete r.v.:
k

VIX] =) (x5 — EIX])*P(X = x))

Jj=1

x| px(x) | x—EIX] | (x—E[X])?
0| 1/8 -1.5 2.25
11]3/8 -0.5 0.25
2 | 3/8 0.5 0.25
3| 1/8 1.5 2.25

+ Let’s go back to the number of treated units to figure out the variance
of the number of treated units:
k

VIX] = (x5 — E[X])px ()

Jj=1

1 3 3 1
(152 % - 4 (052 % > 2y, 2 s &
(—1.5) ><8+( 0.5) ><8-|—0.5 x8+1.5 X3

1 3 3 1
= 2,25 % §+0.25><§+0.25>< §+2.25><§
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+ Use LOTUS to calculate the variance for a discrete r.v.:
k

VIX] =) (x5 — EIX])*P(X = x))

Jj=1

x| px(x) | x—EIX] | (x—E[X])?
0| 1/8 -1.5 2.25
11]3/8 -0.5 0.25
2 | 3/8 0.5 0.25
3| 1/8 1.5 2.25

+ Let’s go back to the number of treated units to figure out the variance
of the number of treated units:
k

VIX] = (x5 — E[X])px ()

Jj=1

1 3 3 1
(152 % - 4 (052 % > 2y, 2 s &
(—1.5) ><8+( 0.5) ><8-|—0.5 x8+1.5 X3

1 3 3 1
= 2,25 % §+0.25><§+0.25>< §+2.25><§_0.75
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Properties of variances

1. V[X + ¢] = V[X] for any constant c.
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Properties of variances

1. V[X + ¢] = V[X] for any constant c.

2. If ais a constant, V[aX] = a?V[X].

3. If X and Y are independent, then V[X + Y] = V[X] + V[Y].
+ But this doesn’t hold for dependent r.v.s

4. V[X] > 0 with equality holding only if X is a constant, P(X = b) = 1.
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Binomial variance

+ Clunky to use LOTUS to calculate variances. Other ways?
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Binomial variance

+ Clunky to use LOTUS to calculate variances. Other ways?
+ Use stories and indicator variables!
+ X ~ Bin(n, p) is equivalent to X; + --- + X, where X; ~ Bern(p)

+ Variance of a Bernoulli:

VX)) = E[X?] — (E[X])* = p—p*> = p(1 — p)

- (Used X? = X; for indicator variables)

+ Binomials are the sum of independent Bernoulli r.v.s so:

VIX] = VX, + -+ X ] = VIXi] + - + VX, ] = np(1 - p)

21/27



Variance of the sample mean

- Let X;,..., X, be i.i.d. with E[X;] = yand V[X]] = o2
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Variance of the sample mean

* Let Xi, ..., X, be i.i.d. with E[X;] = u and V[X]] = o2
- Earlier we saw that E[X,] = y, what about V[X,]?

+ We can apply the rules of variances:

V[X,] [ Zx

- Note: we needed independence and identically distributed for this.

* SD(X,)=o/Vn

+ Under i.i.d. sampling we know the expectation and variance of X,
without any other assumptions about the distribution of the X!

+ We don’t know what distribution it takes though!

22/27



5/ Inequalities



Inequalities

+ Bounds are very important establishing unknown probabilities.
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Inequalities

+ Bounds are very important establishing unknown probabilities.

+ Also very helpful in establishing limit results later on.

+ Remember that E[a + bX] = a+ bE[X] is linear, but E[g(X)] # g(E[X])
for nonlinear functions.

» Can we relate those? Yes for convex and concave functions.
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Concave and convex

Convex Concave
1.5 -
600 -
500
400 - 107
= =
©n300 - o
200 - 0.5 1
100
0 - 0.0 -
T T T T T 1 T T T T T 1
0 1 2 3 4 5 0 1 2 3 4 5
X X
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Jensen'’s inequality

Jensen’s inequality

Let X be a rv. Then, we have

(E[X]) if g is convex
(E[X]) if g is concave

with equality only holding if g is linear.

+ Makes proving variance positive simple.

25/27



Jensen'’s inequality

Jensen’s inequality

Let X be a rv. Then, we have

(E[X]) if g is convex
(E[X]) if g is concave

with equality only holding if g is linear.

+ Makes proving variance positive simple.

. g(x) = x? is convex, so E[X?] > (E[X])>.

25/27



Jensen'’s inequality

Jensen’s inequality

Let X be a rv. Then, we have

(E[X]) if g is convex
(E[X]) if g is concave

with equality only holding if g is linear.

+ Makes proving variance positive simple.
. g(x) = x? is convex, so E[X?] > (E[X])>.

« Allows us to easily reason about complicated functions:

25/27



Jensen'’s inequality

Jensen’s inequality

Let X be a rv. Then, we have

(E[X]) if g is convex
(E[X]) if g is concave

with equality only holding if g is linear.

+ Makes proving variance positive simple.
. g(x) = x? is convex, so E[X?] > (E[X])>.
« Allows us to easily reason about complicated functions:

- E[IX]] = [E[X]]

25/27



Jensen'’s inequality

Jensen’s inequality
Let X be a rv. Then, we have

(E[X]) if g is convex
(E[X]) if g is concave

with equality only holding if g is linear.

+ Makes proving variance positive simple.
. g(x) = x? is convex, so E[X?] > (E[X])>.

« Allows us to easily reason about complicated functions:
- E[IX]] = [E[X]]
- E[1/X] = 1/E[X]

25/27



Jensen'’s inequality

Jensen’s inequality
Let X be a rv. Then, we have

(E[X]) if g is convex
(E[X]) if g is concave

with equality only holding if g is linear.

+ Makes proving variance positive simple.
. g(x) = x? is convex, so E[X?] > (E[X])>.
« Allows us to easily reason about complicated functions:

+ E[IX]) > [EIX]
. E[1/X] > 1/E[X]
- Ellog(X)] < log(E[X])
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6/ Poisson Distribution



Definition

An rv. X has the Poisson distribution with parameter A > 0, written
X ~ Pois(2) if the p.m.f. of X is:
e Ak

PX=k =5 k=012

+ One more discrete distribution is very popular, especially for counts.
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Definition

An rv. X has the Poisson distribution with parameter A > 0, written
X ~ Pois(2) if the p.m.f. of X is:
e Ak

PX=k =5 k=012

+ One more discrete distribution is very popular, especially for counts.

« Number of contributions a candidate for office receives in a day.

- Key calculus fact that makes this a valid p.m.f: }°,° 2% /k! = &%,
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Poisson properties

- A Poisson r.v. X ~ Pois(A) has an unusual property:

2727



Poisson properties

- A Poisson r.v. X ~ Pois(A) has an unusual property:

« The sum of independent Poisson r.v.s is Poisson:

X ~ Pois(A;) Y ~Pois(d,) = X+ Y ~ Pois(A; +1,)

2727



Poisson properties

- A Poisson r.v. X ~ Pois(A) has an unusual property:
« The sum of independent Poisson r.v.s is Poisson:

X ~ Pois(A;) Y ~Pois(d,) = X+ Y ~ Pois(A; +1,)

 If X ~ Bin(n, p) with n large and p small, then X is approx Pois(np).
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