5: Continuous Random Variables

Spring 2023

Matthew Blackwell

Gov 2002 (Harvard)

Where are we? Where are we going?

- Last few weeks: discrete random variables.

Where are we? Where are we going?

- Last few weeks: discrete random variables.
- How to characterize uncertainty about data that takes on discrete values.

Where are we? Where are we going?

- Last few weeks: discrete random variables.
- How to characterize uncertainty about data that takes on discrete values.
- Learned how to define distributions (p.m.f., c.d.f.) and how to summarize.

Where are we? Where are we going?

- Last few weeks: discrete random variables.
- How to characterize uncertainty about data that takes on discrete values.
- Learned how to define distributions (p.m.f., c.d.f.) and how to summarize.
- Now: define the same ideas for r.v.s that can take on any real value.

1/ Continuous
distributions

Continuous r.v.s

- Discrete r.v.: specify $\mathbb{P}(X=x)$ for all possible values \rightsquigarrow p.m.f.

Continuous r.v.s

- Discrete r.v.: specify $\mathbb{P}(X=x)$ for all possible values \rightsquigarrow p.m.f.
-What if X can take any value on any real value?

Continuous r.v.s

- Discrete r.v.: specify $\mathbb{P}(X=x)$ for all possible values \rightsquigarrow p.m.f.
-What if X can take any value on any real value?
- Can we just specify $\mathbb{P}(X=x)$ for all x ?

Continuous r.v.s

- Discrete r.v.: specify $\mathbb{P}(X=x)$ for all possible values \rightsquigarrow p.m.f.
-What if X can take any value on any real value?
- Can we just specify $\mathbb{P}(X=x)$ for all x ?
- No! Proof by counterexample:

Continuous r.v.s

- Discrete r.v.: specify $\mathbb{P}(X=x)$ for all possible values \rightsquigarrow p.m.f.
-What if X can take any value on any real value?
- Can we just specify $\mathbb{P}(X=x)$ for all x ?
- No! Proof by counterexample:
- Suppose $\mathbb{P}(X=x)=\varepsilon$ for $x \in(0,1)$ where ε is a very small number.

Continuous r.v.s

- Discrete r.v.: specify $\mathbb{P}(X=x)$ for all possible values \rightsquigarrow p.m.f.
-What if X can take any value on any real value?
- Can we just specify $\mathbb{P}(X=x)$ for all x ?
- No! Proof by counterexample:
- Suppose $\mathbb{P}(X=x)=\varepsilon$ for $x \in(0,1)$ where ε is a very small number.
-What's the probability of being between 0 and 1 ?

Continuous r.v.s

- Discrete r.v.: specify $\mathbb{P}(X=x)$ for all possible values \rightsquigarrow p.m.f.
-What if X can take any value on any real value?
- Can we just specify $\mathbb{P}(X=x)$ for all x ?
- No! Proof by counterexample:
- Suppose $\mathbb{P}(X=x)=\varepsilon$ for $x \in(0,1)$ where ε is a very small number.
- What's the probability of being between 0 and 1 ?
- There are an infinite number of real numbers between 0 and 1 :

$$
0.232879873 \ldots \quad 0.57263048743 \ldots \quad 0.9823612984 \ldots
$$

Continuous r.v.s

- Discrete r.v.: specify $\mathbb{P}(X=x)$ for all possible values \rightsquigarrow p.m.f.
-What if X can take any value on any real value?
- Can we just specify $\mathbb{P}(X=x)$ for all x ?
- No! Proof by counterexample:
- Suppose $\mathbb{P}(X=x)=\varepsilon$ for $x \in(0,1)$ where ε is a very small number.
- What's the probability of being between 0 and 1 ?
- There are an infinite number of real numbers between 0 and 1 :

$$
0.232879873 \ldots \quad 0.57263048743 \ldots \quad 0.9823612984 \ldots
$$

- Each one has probability $\varepsilon \rightsquigarrow \mathbb{P}(X \in(0,1))=\infty \times \varepsilon=\infty$

Continuous r.v.s

- Discrete r.v.: specify $\mathbb{P}(X=x)$ for all possible values \rightsquigarrow p.m.f.
-What if X can take any value on any real value?
- Can we just specify $\mathbb{P}(X=x)$ for all x ?
- No! Proof by counterexample:
- Suppose $\mathbb{P}(X=x)=\varepsilon$ for $x \in(0,1)$ where ε is a very small number.
- What's the probability of being between 0 and 1 ?
- There are an infinite number of real numbers between 0 and 1 :

$$
0.232879873 \ldots \quad 0.57263048743 \ldots \quad 0.9823612984 \ldots
$$

- Each one has probability $\varepsilon \rightsquigarrow \mathbb{P}(X \in(0,1))=\infty \times \varepsilon=\infty$
- But $\mathbb{P}(X \in(0,1))$ must be less than 1 ! $\rightsquigarrow \mathbb{P}(X=x)$ must be 0 .

Thought experiment: draw a random real value between 0 and 10 . What's the probability that we draw a value that is exact equal to π ?

Thought experiment: draw a random real value between 0 and 10. What's the probability that we draw a value that is exact equal to π ?

| 3.1415926535 | 8979323846 | 2643383279 | 5028841971 | 6939937510 | 5820974944 | 5923078164 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0628620899 | 8628034825 | 3421170679 | 8214808651 | 3282306647 | 0938446095 | 5058223172 |
| 5359408128 | 4811174502 | 8410270193 | 8521105559 | 6446229489 | 5493038196 | 4428810975 |
| 6659334461 | 2847564823 | 3786783165 | 2712019091 | 4564856692 | 3460348610 | 4543266482 |
| 1339360726 | 0249141273 | 7245870066 | 0631558817 | 4881520920 | 9628292540 | 9171536436 |
| 7892590360 | 0113305305 | 4882046652 | 1384146951 | 9415116094 | 3305727036 | 5759591953 |
| 0921861173 | 8193261179 | 3105118548 | 0744623799 | 6274956735 | 1885752724 | 8912279381 |
| 8301194912 | 9833673362 | 4406566430 | 8602139494 | 6395224737 | 1907021798 | 6094370277 |
| 0539217176 | 2931767523 | 8467481846 | 7669405132 | 0005681271 | 4526356082 | 7785771342 |
| 7577896091 | 7363717872 | 1468440901 | 2249534301 | 4654958537 | 1050792279 | 6892589235 |
| 4201995611 | 2129021960 | 8640344181 | 5981362977 | 4771309960 | 5187072113 | 4999999837 |
| 2978049951 | 0597317328 | 1609631859 | 5024459455 | 3469083026 | 4252230825 | 3344685035 |
| 2619311881 | 7101000313 | 7838752886 | 5875332083 | 8142061717 | 7669147303 | 5982534904 |
| 2875546873 | 1159562863 | 8823537875 | 9375195778 | 1857780532 | 1712268066 | 1300192787 |
| 6611195909 | 2164201989 | 3809525720 | 1065485863 | 2788659361 | 5338182796 | 8230301952 |
| 0353018529 | 6899577362 | 2599413891 | 2497217752 | 8347913151 | 5574857242 | 4541506959 |
| 5082953311 | 6861727855 | 8890750983 | 8175463746 | 4939319255 | 0604009277 | 0167113900 |

Probability density functions

Definition

A r.v., X, is continuous if its c.d.f. $F_{X}(x)=\mathbb{P}(X \leq x)$ is a continuous function.

Probability density functions

Definition

A r.v., X, is continuous if its c.d.f. $F_{X}(x)=\mathbb{P}(X \leq x)$ is a continuous function.

- Essentially: the c.d.f. of a continuous r.v. has no jumps:

Discrete c.d.f. (Binomial)

Continuous c.d.f. (Logistic)

Why "continuous"?

- How does a continuous c.d.f. connect to $\mathbb{P}(X=x)$? Note:

$$
\mathbb{P}(X=x) \leq \mathbb{P}(x-\epsilon<X \leq x)=F_{X}(x)-F_{X}(x-\epsilon)
$$

Why "continuous"?

- How does a continuous c.d.f. connect to $\mathbb{P}(X=x)$? Note:

$$
\mathbb{P}(X=x) \leq \mathbb{P}(x-\epsilon<X \leq x)=F_{X}(x)-F_{X}(x-\epsilon)
$$

- But whe the c.d.f. is continuous we know that

$$
\mathbb{P}(X=x) \leq \lim _{\epsilon \rightarrow 0} F(x)-F(x-\epsilon)=0
$$

Why "continuous"?

- How does a continuous c.d.f. connect to $\mathbb{P}(X=x)$? Note:

$$
\mathbb{P}(X=x) \leq \mathbb{P}(x-\epsilon<X \leq x)=F_{X}(x)-F_{X}(x-\epsilon)
$$

- But whe the c.d.f. is continuous we know that

$$
\mathbb{P}(X=x) \leq \lim _{\epsilon \rightarrow 0} F(x)-F(x-\epsilon)=0
$$

- Continuous c.d.f.s imply the "point probabilities" are 0 . What to do?

Why "continuous"?

- How does a continuous c.d.f. connect to $\mathbb{P}(X=x)$? Note:

$$
\mathbb{P}(X=x) \leq \mathbb{P}(x-\epsilon<X \leq x)=F_{X}(x)-F_{X}(x-\epsilon)
$$

- But whe the c.d.f. is continuous we know that

$$
\mathbb{P}(X=x) \leq \lim _{\epsilon \rightarrow 0} F(x)-F(x-\epsilon)=0
$$

- Continuous c.d.f.s imply the "point probabilities" are 0 . What to do?
- With discrete, we summed up the p.m.f. to get the c.d.f.

$$
F_{X}(x)=\mathbb{P}(X \leq x)=\sum_{j: x_{j} \leq x} p_{X}\left(x_{j}\right)
$$

Why "continuous"?

- How does a continuous c.d.f. connect to $\mathbb{P}(X=x)$? Note:

$$
\mathbb{P}(X=x) \leq \mathbb{P}(x-\epsilon<X \leq x)=F_{X}(x)-F_{X}(x-\epsilon)
$$

- But whe the c.d.f. is continuous we know that

$$
\mathbb{P}(X=x) \leq \lim _{\epsilon \rightarrow 0} F(x)-F(x-\epsilon)=0
$$

- Continuous c.d.f.s imply the "point probabilities" are 0 . What to do?
- With discrete, we summed up the p.m.f. to get the c.d.f.

$$
F_{X}(x)=\mathbb{P}(X \leq x)=\sum_{j: x_{j} \leq x} p_{X}\left(x_{j}\right)
$$

- For continuous r.v.s, we'll replace the sum with an integral!

$$
F_{X}(x)=\mathbb{P}(X \leq x)=\int_{-\infty}^{x} f_{X}(t) d t
$$

Probability density function

Definition

The probability density function of a continuous r.v. $X f_{X}(x)$ is the function that satisfies

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t, \quad \text { for all } x
$$

- By the fund. theorem of calculus p.d.f. is the derivative of the c.d.f.:

$$
\frac{d}{d x} F_{X}(x)=f_{X}(x)
$$

Probability density function

Definition

The probability density function of a continuous r.v. $X f_{X}(x)$ is the function that satisfies

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t, \quad \text { for all } x
$$

- By the fund. theorem of calculus p.d.f. is the derivative of the c.d.f.:

$$
\frac{d}{d x} F_{X}(x)=f_{X}(x)
$$

- Interval probabilities:

$$
\mathbb{P}(a<X<b)=\mathbb{P}(X \leq b)-\mathbb{P}(X \leq a)=F(b)-F(a)=\int_{a}^{b} f_{X}(x) d x
$$

Probability density function

Definition

The probability density function of a continuous r.v. $X f_{X}(x)$ is the function that satisfies

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t, \quad \text { for all } x
$$

- By the fund. theorem of calculus p.d.f. is the derivative of the c.d.f.:

$$
\frac{d}{d x} F_{X}(x)=f_{X}(x)
$$

- Interval probabilities:

$$
\mathbb{P}(a<X<b)=\mathbb{P}(X \leq b)-\mathbb{P}(X \leq a)=F(b)-F(a)=\int_{a}^{b} f_{X}(x) d x
$$

- With continuous we don't have to worry about $<$ vs \leq.

Probability density function

Definition

The probability density function of a continuous r.v. $X f_{X}(x)$ is the function that satisfies

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t, \quad \text { for all } x
$$

- By the fund. theorem of calculus p.d.f. is the derivative of the c.d.f.:

$$
\frac{d}{d x} F_{X}(x)=f_{X}(x)
$$

- Interval probabilities:

$$
\mathbb{P}(a<X<b)=\mathbb{P}(X \leq b)-\mathbb{P}(X \leq a)=F(b)-F(a)=\int_{a}^{b} f_{X}(x) d x
$$

- With continuous we don't have to worry about $<$ vs \leq.
- $\mathbb{P}(a<X<b)=\mathbb{P}(a<X \leq b)=\mathbb{P}(a \leq X<b)=\mathbb{P}(a \leq X \leq b)$.

The p.d.f.

Logistic distribution (p.d.f.)

- \rightsquigarrow the probability of a region is the area under the p.d.f. for that region.

The p.d.f.

Logistic distribution (p.d.f.)

- \rightsquigarrow the probability of a region is the area under the p.d.f. for that region.
- Support of X is all values such that $f_{X}(x)>0$.

The p.d.f.

Logistic distribution (p.d.f.)

- \rightsquigarrow the probability of a region is the area under the p.d.f. for that region.
- Support of X is all values such that $f_{X}(x)>0$.
- Properties of a valid p.d.f.:

The p.d.f.

Logistic distribution (p.d.f.)

- \rightsquigarrow the probability of a region is the area under the p.d.f. for that region.
- Support of X is all values such that $f_{X}(x)>0$.
- Properties of a valid p.d.f.:
- Nonnegative: $f_{X}(x)>0$

The p.d.f.

Logistic distribution (p.d.f.)

- \rightsquigarrow the probability of a region is the area under the p.d.f. for that region.
- Support of X is all values such that $f_{X}(x)>0$.
- Properties of a valid p.d.f.:
- Nonnegative: $f_{X}(x)>0$
- Integrates to 1: $\int_{-\infty}^{\infty} f_{X}(x) d x=1$

The p.d.f.

Logistic distribution (p.d.f.)

- \rightsquigarrow the probability of a region is the area under the p.d.f. for that region.
- Support of X is all values such that $f_{X}(x)>0$.
- Properties of a valid p.d.f.:
- Nonnegative: $f_{X}(x)>0$
- Integrates to 1: $\int_{-\infty}^{\infty} f_{X}(x) d x=1$
- Important: $f_{X}(x)$ can be bigger than 1 !

p.d.f. intuition

Logistic distribution (p.d.f.)

- Intuition of a density:

$$
f\left(x_{0}\right) \varepsilon \approx \mathbb{P}\left(X \in\left(x_{0}-\varepsilon / 2, x_{0}+\varepsilon / 2\right)\right)
$$

Continuous uniform distribution

- Simple and really important continuous distribution: uniform.

Continuous uniform distribution

- Simple and really important continuous distribution: uniform.
- Intuitively, every equal-sized interval has the same probability.

Continuous uniform distribution

- Simple and really important continuous distribution: uniform.
- Intuitively, every equal-sized interval has the same probability.
- How can figure out the p.d.f. for such a distribution?

Continuous uniform distribution

- Simple and really important continuous distribution: uniform.
- Intuitively, every equal-sized interval has the same probability.
- How can figure out the p.d.f. for such a distribution?

Definition

A continuous r.v. U has a Uniform distribution on the interval (a, b) if its p.d.f. is

$$
f(x)= \begin{cases}\frac{1}{b-a} & \text { for } x \in[a, b] \\ 0 & \text { otherwise }\end{cases}
$$

Continuous uniform distribution

- Simple and really important continuous distribution: uniform.
- Intuitively, every equal-sized interval has the same probability.
- How can figure out the p.d.f. for such a distribution?

Definition

A continuous r.v. U has a Uniform distribution on the interval (a, b) if its p.d.f. is

$$
f(x)= \begin{cases}\frac{1}{b-a} & \text { for } x \in[a, b] \\ 0 & \text { otherwise }\end{cases}
$$

- If (c, d) is a subinterval of (a, b) then $\mathbb{P}(U \in(c, d))$ is proportional to $c-d$

Continuous uniform distribution

- Simple and really important continuous distribution: uniform.
- Intuitively, every equal-sized interval has the same probability.
- How can figure out the p.d.f. for such a distribution?

Definition

A continuous r.v. U has a Uniform distribution on the interval (a, b) if its p.d.f. is

$$
f(x)= \begin{cases}\frac{1}{b-a} & \text { for } x \in[a, b] \\ 0 & \text { otherwise }\end{cases}
$$

- If (c, d) is a subinterval of (a, b) then $\mathbb{P}(U \in(c, d))$ is proportional to $c-d$
- Distribution of U conditional on being in (c, d) is $\operatorname{Unif}(c, d)$.

Uniform pdf and cdf

Uniform pdf and cdf

- Location-scale transformation: Let $U \sim \operatorname{Unif}(a, b)$. Then $\widetilde{U}=c U+d$ is $\operatorname{Unif}(c a+d, c b+d)$

Uniform pdf and cdf

- Location-scale transformation: Let $U \sim \operatorname{Unif}(a, b)$. Then $\widetilde{U}=c U+d$ is $\operatorname{Unif}(c a+d, c b+d)$
- Linear transformations of uniforms preserve the uniform distribution.

2/ Expectation for continuous r.v.s

Expectation for a continuous r.v.

- Expectation of a continuous r.v.:

$$
\mathbb{E}[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

Expectation for a continuous r.v.

- Expectation of a continuous r.v.:

$$
\mathbb{E}[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

- Unifying notation you may see: $\mathbb{E}[X]=\int_{-\infty}^{\infty} x d F(x)$

Expectation for a continuous r.v.

- Expectation of a continuous r.v.:

$$
\mathbb{E}[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

- Unifying notation you may see: $\mathbb{E}[X]=\int_{-\infty}^{\infty} x d F(x)$
- Expectation of a uniform (0,1):

Expectation for a continuous r.v.

- Expectation of a continuous r.v.:

$$
\mathbb{E}[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

- Unifying notation you may see: $\mathbb{E}[X]=\int_{-\infty}^{\infty} x d F(x)$
- Expectation of a uniform $(0,1): \mathbb{E}[U]=(a+b) / 2$

Expectation for a continuous r.v.

- Expectation of a continuous r.v.:

$$
\mathbb{E}[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

- Unifying notation you may see: $\mathbb{E}[X]=\int_{-\infty}^{\infty} x d F(x)$
- Expectation of a uniform (0,1): $\mathbb{E}[U]=(a+b) / 2$
- LOTUS with continuous r.v.s: $\mathbb{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x$

Expectation for a continuous r.v.

- Expectation of a continuous r.v.:

$$
\mathbb{E}[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

- Unifying notation you may see: $\mathbb{E}[X]=\int_{-\infty}^{\infty} x d F(x)$
- Expectation of a uniform $(0,1): \mathbb{E}[U]=(a+b) / 2$
- LOTUS with continuous r.v.s: $\mathbb{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x$
- Variance of a continuous r.v.s:

$$
\mathbb{V}[X]=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\int_{-\infty}^{\infty}(x-\mathbb{E}[X])^{2} f_{X}(x) d x
$$

Expectation for a continuous r.v.

- Expectation of a continuous r.v.:

$$
\mathbb{E}[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

- Unifying notation you may see: $\mathbb{E}[X]=\int_{-\infty}^{\infty} x d F(x)$
- Expectation of a uniform $(0,1): \mathbb{E}[U]=(a+b) / 2$
- LOTUS with continuous r.v.s: $\mathbb{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x$
- Variance of a continuous r.v.s:

$$
\mathbb{V}[X]=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\int_{-\infty}^{\infty}(x-\mathbb{E}[X])^{2} f_{X}(x) d x
$$

- Linearity and other properties of $\mathbb{E}[]$ and $\mathbb{V}[]$ still hold!

Expectation for a continuous r.v.

- Expectation of a continuous r.v.:

$$
\mathbb{E}[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

- Unifying notation you may see: $\mathbb{E}[X]=\int_{-\infty}^{\infty} x d F(x)$
- Expectation of a uniform $(0,1): \mathbb{E}[U]=(a+b) / 2$
- LOTUS with continuous r.v.s: $\mathbb{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x$
- Variance of a continuous r.v.s:

$$
\mathbb{V}[X]=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\int_{-\infty}^{\infty}(x-\mathbb{E}[X])^{2} f_{X}(x) d x
$$

- Linearity and other properties of $\mathbb{E}[]$ and $\mathbb{V}[]$ still hold!
- In particular, we still have $\mathbb{V}[X]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}$

Expectation of random circle areas

- Let $R \sim \operatorname{Unif}(0,1)$ and A be the area of the circle with radius R.

Expectation of random circle areas

- Let $R \sim \operatorname{Unif}(0,1)$ and A be the area of the circle with radius R.
- What are $\mathbb{E}[A]$ and $\mathbb{V}[A]$?

Expectation of random circle areas

- Let $R \sim \operatorname{Unif}(0,1)$ and A be the area of the circle with radius R.
- What are $\mathbb{E}[A]$ and $\mathbb{V}[A]$?
- For expectation, use LOTUS!

Expectation of random circle areas

- Let $R \sim \operatorname{Unif}(0,1)$ and A be the area of the circle with radius R.
- What are $\mathbb{E}[A]$ and $\mathbb{V}[A]$?
- For expectation, use LOTUS!

$$
\mathbb{E}[A]=\mathbb{E}\left[\pi R^{2}\right]=\int_{0}^{1} \pi r^{2} d r
$$

Expectation of random circle areas

- Let $R \sim \operatorname{Unif}(0,1)$ and A be the area of the circle with radius R.
- What are $\mathbb{E}[A]$ and $\mathbb{V}[A]$?
- For expectation, use LOTUS!

$$
\begin{aligned}
\mathbb{E}[A]=\mathbb{E}\left[\pi R^{2}\right] & =\int_{0}^{1} \pi r^{2} d r \\
& =\left.(\pi / 3) r^{3}\right|_{0} ^{1}
\end{aligned}
$$

Expectation of random circle areas

- Let $R \sim \operatorname{Unif}(0,1)$ and A be the area of the circle with radius R.
- What are $\mathbb{E}[A]$ and $\mathbb{V}[A]$?
- For expectation, use LOTUS!

$$
\begin{aligned}
\mathbb{E}[A]=\mathbb{E}\left[\pi R^{2}\right] & =\int_{0}^{1} \pi r^{2} d r \\
& =\left.(\pi / 3) r^{3}\right|_{0} ^{1} \\
& =(\pi / 3) \cdot 1^{3}-(\pi / 3) \cdot 0^{3}=(\pi / 3)
\end{aligned}
$$

Expectation of random circle areas

- Let $R \sim \operatorname{Unif}(0,1)$ and A be the area of the circle with radius R.
- What are $\mathbb{E}[A]$ and $\mathbb{V}[A]$?
- For expectation, use LOTUS!

$$
\begin{aligned}
\mathbb{E}[A]=\mathbb{E}\left[\pi R^{2}\right] & =\int_{0}^{1} \pi r^{2} d r \\
& =\left.(\pi / 3) r^{3}\right|_{0} ^{1} \\
& =(\pi / 3) \cdot 1^{3}-(\pi / 3) \cdot 0^{3}=(\pi / 3)
\end{aligned}
$$

- For variance, use $\mathbb{V}[A]=\mathbb{E}\left[A^{2}\right]-(\mathbb{E}[A])^{2}$:

Expectation of random circle areas

- Let $R \sim \operatorname{Unif}(0,1)$ and A be the area of the circle with radius R.
- What are $\mathbb{E}[A]$ and $\mathbb{V}[A]$?
- For expectation, use LOTUS!

$$
\begin{aligned}
\mathbb{E}[A]=\mathbb{E}\left[\pi R^{2}\right] & =\int_{0}^{1} \pi r^{2} d r \\
& =\left.(\pi / 3) r^{3}\right|_{0} ^{1} \\
& =(\pi / 3) \cdot 1^{3}-(\pi / 3) \cdot 0^{3}=(\pi / 3)
\end{aligned}
$$

- For variance, use $\mathbb{V}[A]=\mathbb{E}\left[A^{2}\right]-(\mathbb{E}[A])^{2}$:

$$
\mathbb{E}\left[A^{2}\right]=\mathbb{E}\left[\pi^{2} R^{4}\right]=\int_{0}^{1} \pi^{2} r^{4} d r
$$

Expectation of random circle areas

- Let $R \sim \operatorname{Unif}(0,1)$ and A be the area of the circle with radius R.
- What are $\mathbb{E}[A]$ and $\mathbb{V}[A]$?
- For expectation, use LOTUS!

$$
\begin{aligned}
\mathbb{E}[A]=\mathbb{E}\left[\pi R^{2}\right] & =\int_{0}^{1} \pi r^{2} d r \\
& =\left.(\pi / 3) r^{3}\right|_{0} ^{1} \\
& =(\pi / 3) \cdot 1^{3}-(\pi / 3) \cdot 0^{3}=(\pi / 3)
\end{aligned}
$$

- For variance, use $\mathbb{V}[A]=\mathbb{E}\left[A^{2}\right]-(\mathbb{E}[A])^{2}$:

$$
\mathbb{E}\left[A^{2}\right]=\mathbb{E}\left[\pi^{2} R^{4}\right]=\int_{0}^{1} \pi^{2} r^{4} d r=\left.\left(\pi^{2} / 5\right) r^{5}\right|_{0} ^{1}
$$

Expectation of random circle areas

- Let $R \sim \operatorname{Unif}(0,1)$ and A be the area of the circle with radius R.
- What are $\mathbb{E}[A]$ and $\mathbb{V}[A]$?
- For expectation, use LOTUS!

$$
\begin{aligned}
\mathbb{E}[A]=\mathbb{E}\left[\pi R^{2}\right] & =\int_{0}^{1} \pi r^{2} d r \\
& =\left.(\pi / 3) r^{3}\right|_{0} ^{1} \\
& =(\pi / 3) \cdot 1^{3}-(\pi / 3) \cdot 0^{3}=(\pi / 3)
\end{aligned}
$$

- For variance, use $\mathbb{V}[A]=\mathbb{E}\left[A^{2}\right]-(\mathbb{E}[A])^{2}$:

$$
\begin{aligned}
\mathbb{E}\left[A^{2}\right]=\mathbb{E}\left[\pi^{2} R^{4}\right] & =\int_{0}^{1} \pi^{2} r^{4} d r=\left.\left(\pi^{2} / 5\right) r^{5}\right|_{0} ^{1} \\
& =\left(\pi^{2} / 5\right) \cdot 1^{5}-\left(\pi^{2} / 5\right) \cdot 0^{5}=\left(\pi^{2} / 5\right)
\end{aligned}
$$

Expectation of random circle areas

- Let $R \sim \operatorname{Unif}(0,1)$ and A be the area of the circle with radius R.
- What are $\mathbb{E}[A]$ and $\mathbb{V}[A]$?
- For expectation, use LOTUS!

$$
\begin{aligned}
\mathbb{E}[A]=\mathbb{E}\left[\pi R^{2}\right] & =\int_{0}^{1} \pi r^{2} d r \\
& =\left.(\pi / 3) r^{3}\right|_{0} ^{1} \\
& =(\pi / 3) \cdot 1^{3}-(\pi / 3) \cdot 0^{3}=(\pi / 3)
\end{aligned}
$$

- For variance, use $\mathbb{V}[A]=\mathbb{E}\left[A^{2}\right]-(\mathbb{E}[A])^{2}$:

$$
\begin{aligned}
\mathbb{E}\left[A^{2}\right]=\mathbb{E}\left[\pi^{2} R^{4}\right] & =\int_{0}^{1} \pi^{2} r^{4} d r=\left.\left(\pi^{2} / 5\right) r^{5}\right|_{0} ^{1} \\
& =\left(\pi^{2} / 5\right) \cdot 1^{5}-\left(\pi^{2} / 5\right) \cdot 0^{5}=\left(\pi^{2} / 5\right)
\end{aligned}
$$

- $\rightsquigarrow \mathbb{V}[A]=4 \pi^{2} / 45$. Challenge: find the c.d.f. and p.d.f. of A

3/ Universality of the uniform

Quantile function

- Inverse of the c.d.f. F^{-1} is called the quantile function

Quantile function

- Inverse of the c.d.f. F^{-1} is called the quantile function
- $F^{-1}(\alpha)$ is the value of x such that $\mathbb{P}(X \leq x)=\alpha$

Quantile function

- Inverse of the c.d.f. F^{-1} is called the quantile function
- $F^{-1}(\alpha)$ is the value of x such that $\mathbb{P}(X \leq x)=\alpha$
- Takes probabilities as arguments!

Quantile function

- Inverse of the c.d.f. F^{-1} is called the quantile function
- $F^{-1}(\alpha)$ is the value of x such that $\mathbb{P}(X \leq x)=\alpha$
- Takes probabilities as arguments!
- $F^{-1}(0.5)$ is the median, $F^{-1}(0.25)$ is the lower quartile, etc

Quantile function

- Inverse of the c.d.f. F^{-1} is called the quantile function
- $F^{-1}(\alpha)$ is the value of x such that $\mathbb{P}(X \leq x)=\alpha$
- Takes probabilities as arguments!
- $F^{-1}(0.5)$ is the median, $F^{-1}(0.25)$ is the lower quartile, etc
- Intuition: exactly the same as percentiles on exams.

Quantile function

- Inverse of the c.d.f. F^{-1} is called the quantile function
- $F^{-1}(\alpha)$ is the value of x such that $\mathbb{P}(X \leq x)=\alpha$
- Takes probabilities as arguments!
- $F^{-1}(0.5)$ is the median, $F^{-1}(0.25)$ is the lower quartile, etc
- Intuition: exactly the same as percentiles on exams.
- You've probably used them before: confidence interval critical values.

Quantile functions

Universality of the Uniform

- The Uniform distribution has a deep connection to all continuous r.v.s

Universality of the Uniform

- The Uniform distribution has a deep connection to all continuous r.v.s

1. Let $U \sim \operatorname{Unif}(0,1)$ and $X=F^{-1}(U)$, then X is an r.v. with c.d.f. F.

Universality of the Uniform

- The Uniform distribution has a deep connection to all continuous r.v.s

1. Let $U \sim \operatorname{Unif}(0,1)$ and $X=F^{-1}(U)$, then X is an r.v. with c.d.f. F.
2. If X is an r.v. with c.d.f. F, then $F(X) \sim \operatorname{Unif}(0,1)$.

Universality of the Uniform

- The Uniform distribution has a deep connection to all continuous r.v.s

1. Let $U \sim \operatorname{Unif}(0,1)$ and $X=F^{-1}(U)$, then X is an r.v. with c.d.f. F.
2. If X is an r.v. with c.d.f. F, then $F(X) \sim \operatorname{Unif}(0,1)$.

- Careful: $F(X)$ means plug the random variable into the c.d.f. as a function.

Universality of the Uniform

- The Uniform distribution has a deep connection to all continuous r.v.s

1. Let $U \sim \operatorname{Unif}(0,1)$ and $X=F^{-1}(U)$, then X is an r.v. with c.d.f. F.
2. If X is an r.v. with c.d.f. F, then $F(X) \sim \operatorname{Unif}(0,1)$.

- Careful: $F(X)$ means plug the random variable into the c.d.f. as a function.
- Not $F(X) \neq \mathbb{P}(X \leq X)$.

4/ Normal distribution

Standard normal distribution

Definition

A continuous r.v. Z follows a standard normal distribution if its p.d.f. φ is given as

$$
\varphi(z)=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2}, \quad-\infty<z<\infty,
$$

and we write this $Z \sim \mathcal{N}(0,1)$

Standard normal distribution

Definition

A continuous r.v. Z follows a standard normal distribution if its p.d.f. φ is given as

$$
\varphi(z)=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2}, \quad-\infty<z<\infty,
$$

and we write this $Z \sim \mathcal{N}(0,1)$

- Not immediately obvious, but tricky calculus will show $\int_{-\infty}^{\infty} \varphi(z)=1$.

Standard normal distribution

Definition

A continuous r.v. Z follows a standard normal distribution if its p.d.f. φ is given as

$$
\varphi(z)=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2}, \quad-\infty<z<\infty,
$$

and we write this $Z \sim \mathcal{N}(0,1)$

- Not immediately obvious, but tricky calculus will show $\int_{-\infty}^{\infty} \varphi(z)=1$.
- Normal c.d.f. has no closed form solution, so written as:

$$
\Phi(z)=\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2} d t
$$

Standard normal distribution

Definition

A continuous r.v. Z follows a standard normal distribution if its p.d.f. φ is given as

$$
\varphi(z)=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2}, \quad-\infty<z<\infty,
$$

and we write this $Z \sim \mathcal{N}(0,1)$

- Not immediately obvious, but tricky calculus will show $\int_{-\infty}^{\infty} \varphi(z)=1$.
- Normal c.d.f. has no closed form solution, so written as:

$$
\Phi(z)=\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2} d t
$$

- Standard normal is mean zero, variance $1: \mathbb{E}[Z]=0, \vee[Z]=1$.

The normal distribution

c.d.f.

- Deeply symmetric:

The normal distribution

- Deeply symmetric:
- p.d.f. is symmetric: $\varphi(z)=\varphi(-z)$

The normal distribution

- Deeply symmetric:
- p.d.f. is symmetric: $\varphi(z)=\varphi(-z)$
- Tail areas are symmetric $\Phi(z)=1-\Phi(-z)$

The normal distribution

- Deeply symmetric:
- p.d.f. is symmetric: $\varphi(z)=\varphi(-z)$
- Tail areas are symmetric $\Phi(z)=1-\Phi(-z)$
- Z and $-Z$ are both $\mathcal{N}(0,1)$

General normal distribution

Defintion

If $Z \sim \mathcal{N}(0,1)$ then

$$
X=\mu+\sigma Z
$$

follows the normal distribution with mean μ and variance σ^{2}, written $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.

General normal distribution

Defintion

If $Z \sim \mathcal{N}(0,1)$ then

$$
X=\mu+\sigma Z
$$

follows the normal distribution with mean μ and variance σ^{2}, written $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.

- We can move back to a standard normal through standardization:

$$
\frac{X-\mu}{\sigma} \sim \mathcal{N}(0,1)
$$

General normal distribution

Defintion

If $Z \sim \mathcal{N}(0,1)$ then

$$
X=\mu+\sigma Z
$$

follows the normal distribution with mean μ and variance σ^{2}, written $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.

- We can move back to a standard normal through standardization:

$$
\frac{X-\mu}{\sigma} \sim \mathcal{N}(0,1)
$$

- c.d.f.: $\Phi((x-\mu) / \sigma)$

General normal distribution

Defintion

If $Z \sim \mathcal{N}(0,1)$ then

$$
X=\mu+\sigma Z
$$

follows the normal distribution with mean μ and variance σ^{2}, written $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.

- We can move back to a standard normal through standardization:

$$
\frac{X-\mu}{\sigma} \sim \mathcal{N}(0,1)
$$

- c.d.f.: $\Phi((x-\mu) / \sigma)$
- p.d.f.:

$$
f_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\}
$$

Properties of normals and sums

- If $X_{1} \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $X_{2} \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$ and $X_{1} \Perp X_{2}$,

$$
X_{1}+X_{2} \sim \mathcal{N}\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)
$$

Properties of normals and sums

- If $X_{1} \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $X_{2} \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$ and $X_{1} \Perp X_{2}$,

$$
X_{1}+X_{2} \sim \mathcal{N}\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)
$$

- Cramer's theorem: if $X_{1} \Perp X_{2}$ and $X_{1}+X_{2}$ is normal, then X_{1} and X_{2} are normal.

Using pnorm

- pnorm() evaluates the c.d.f. of the normal:

Using pnorm

- pnorm() evaluates the c.d.f. of the normal:

pnorm(q $=0$, mean $=0$, sd $=1$)
\#\# [1] 0.5

Using pnorm

- pnorm() evaluates the c.d.f. of the normal:

pnorm(q $=0$, mean $=0, s d=1$, lower.tail = FALSE)
\#\# [1] 0.5

Using pnorm

- pnorm() evaluates the c.d.f. of the normal:

$\operatorname{pnorm}(q=0$, mean $=0, s d=1)-\operatorname{pnorm}(q=-1$, mean $=0, s d=1)$
\#\# [1] 0.341

Empirical Rule for the Normal Distribution

- If $Z \sim \mathcal{N}(0,1)$, then the following are roughly true:

Empirical Rule for the Normal Distribution

- If $Z \sim \mathcal{N}(0,1)$, then the following are roughly true:
- Roughly 68% of the distribution of Z is between -1 and 1 .

Empirical Rule for the Normal Distribution

- If $Z \sim \mathcal{N}(0,1)$, then the following are roughly true:
- Roughly 68% of the distribution of Z is between -1 and 1 .
- Roughly 95% of the distribution of Z is between -2 and 2 .

Empirical Rule for the Normal Distribution

- If $Z \sim \mathcal{N}(0,1)$, then the following are roughly true:
- Roughly 68% of the distribution of Z is between -1 and 1 .
- Roughly 95% of the distribution of Z is between -2 and 2 .
- Roughly 99.7% of the distribution of Z is between -3 and 3 .

Chi-square distribution

Definition

Let $V=Z_{1}^{2}+\cdots+Z_{n}^{2}$ where $Z_{1}, Z_{2}, \ldots, Z_{n}$ are i.i.d. $\mathcal{N}(0,1)$. Then V follows the Chi-square distribution with n degrees of freedom, written $V \sim \chi_{n}^{2}$

Chi-square distribution

Definition

Let $V=Z_{1}^{2}+\cdots+Z_{n}^{2}$ where $Z_{1}, Z_{2}, \ldots, Z_{n}$ are i.i.d. $\mathcal{N}(0,1)$. Then V follows the Chi-square distribution with n degrees of freedom, written $V \sim \chi_{n}^{2}$

- Why do we care? Sample variance of normal r.v.s X_{1}, \ldots, X_{n} i.i.d. $N\left(\mu, \sigma^{2}\right)$:

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \quad \frac{(n-1) s^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}
$$

Chi-square distribution

Definition

Let $V=Z_{1}^{2}+\cdots+Z_{n}^{2}$ where $Z_{1}, Z_{2}, \ldots, Z_{n}$ are i.i.d. $\mathcal{N}(0,1)$. Then V follows the Chi-square distribution with n degrees of freedom, written $V \sim \chi_{n}^{2}$

- Why do we care? Sample variance of normal r.v.s X_{1}, \ldots, X_{n} i.i.d. $N\left(\mu, \sigma^{2}\right)$:

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \quad \frac{(n-1) s^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}
$$

- Furthermore, \bar{X}_{n} is independent of s^{2} / σ^{2}.

Student t distribution

Definition

If $Z \sim \mathcal{N}(0,1)$ and $V \sim \chi_{n}^{2}$ with $Z \Perp V$, then

$$
T=\frac{Z}{\sqrt{V / n}},
$$

follows the student-t distribution with n degrees of freedom, written $T \sim t_{n}$.

Student t distribution

Definition

If $Z \sim \mathcal{N}(0,1)$ and $V \sim \chi_{n}^{2}$ with $Z \Perp V$, then

$$
T=\frac{Z}{\sqrt{V / n}},
$$

follows the student-t distribution with n degrees of freedom, written $T \sim t_{n}$.

- Important result for the normal model: if X_{1}, \ldots, X_{n} are i.i.d. $\mathcal{N}\left(\mu, \sigma^{2}\right)$:

$$
T=\frac{\bar{X}_{n}-\mu}{\sqrt{s^{2} / n}} \sim t_{n-1}
$$

Student t distribution

Definition

If $Z \sim \mathcal{N}(0,1)$ and $V \sim \chi_{n}^{2}$ with $Z \Perp V$, then

$$
T=\frac{Z}{\sqrt{V / n}},
$$

follows the student-t distribution with n degrees of freedom, written $T \sim t_{n}$.

- Important result for the normal model: if X_{1}, \ldots, X_{n} are i.i.d. $\mathcal{N}\left(\mu, \sigma^{2}\right)$:

$$
T=\frac{\bar{X}_{n}-\mu}{\sqrt{s^{2} / n}} \sim t_{n-1}
$$

- Properties of the t distribution:

Student t distribution

Definition

If $Z \sim \mathcal{N}(0,1)$ and $V \sim \chi_{n}^{2}$ with $Z \Perp V$, then

$$
T=\frac{Z}{\sqrt{V / n}},
$$

follows the student-t distribution with n degrees of freedom, written $T \sim t_{n}$.

- Important result for the normal model: if X_{1}, \ldots, X_{n} are i.i.d. $\mathcal{N}\left(\mu, \sigma^{2}\right)$:

$$
T=\frac{\bar{X}_{n}-\mu}{\sqrt{s^{2} / n}} \sim t_{n-1}
$$

- Properties of the t distribution:
- Symmetric and mean-zero like the standard normal.

Student t distribution

Definition

If $Z \sim \mathcal{N}(0,1)$ and $V \sim \chi_{n}^{2}$ with $Z \Perp V$, then

$$
T=\frac{Z}{\sqrt{V / n}},
$$

follows the student-t distribution with n degrees of freedom, written $T \sim t_{n}$.

- Important result for the normal model: if X_{1}, \ldots, X_{n} are i.i.d. $\mathcal{N}\left(\mu, \sigma^{2}\right)$:

$$
T=\frac{\bar{X}_{n}-\mu}{\sqrt{s^{2} / n}} \sim t_{n-1}
$$

- Properties of the t distribution:
- Symmetric and mean-zero like the standard normal.
- Fatter tails than the normal.

Student t distribution

Definition

If $Z \sim \mathcal{N}(0,1)$ and $V \sim \chi_{n}^{2}$ with $Z \Perp V$, then

$$
T=\frac{Z}{\sqrt{V / n}},
$$

follows the student-t distribution with n degrees of freedom, written $T \sim t_{n}$.

- Important result for the normal model: if X_{1}, \ldots, X_{n} are i.i.d. $\mathcal{N}\left(\mu, \sigma^{2}\right)$:

$$
T=\frac{\bar{X}_{n}-\mu}{\sqrt{s^{2} / n}} \sim t_{n-1}
$$

- Properties of the t distribution:
- Symmetric and mean-zero like the standard normal.
- Fatter tails than the normal.
- Converges to $\mathcal{N}(0,1)$ as $n \rightarrow \infty$

Appendix

Symmetry of iid continuous r.v.s

Proposition

Let X_{1}, \ldots, X_{n} be i.i.d. from a continuous distribution. Then,

$$
\mathbb{P}\left(X_{a_{1}}<X_{a_{2}}<\cdots<X_{a_{n}}\right)=\frac{1}{n!}
$$

for any permutation $a_{1}, a_{2}, \ldots, a_{n}$ of $1,2, \ldots, n$.

- All orderings of continuous i.i.d. r.v.s are equally likely.

Symmetry of iid continuous r.v.s

Proposition

Let X_{1}, \ldots, X_{n} be i.i.d. from a continuous distribution. Then,

$$
\mathbb{P}\left(X_{a_{1}}<X_{a_{2}}<\cdots<X_{a_{n}}\right)=\frac{1}{n!}
$$

for any permutation $a_{1}, a_{2}, \ldots, a_{n}$ of $1,2, \ldots, n$.

- All orderings of continuous i.i.d. r.v.s are equally likely.
- Doesn't necessarily hold for discrete r.v.s

