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Where are we? Where are we going?

« Distributions of one variable: how to describe and summarize
uncertainty about one variable.
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Where are we? Where are we going?

« Distributions of one variable: how to describe and summarize
uncertainty about one variable.

+ Today: distributions of multiple variables to describe relationships
between variables.

+ Later: use data to learn about probability distributions.
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Why multiple random variables?

1. How to measure the relationship between two variables X and Y?
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Why multiple random variables?

1. How to measure the relationship between two variables X and Y?

2. What if we have many observations of the same variable, X, X,, ..., X,?

n
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1/ Distributions of Multiple
Random Variables
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+ The joint distribution of two r.v.s, X and Y, describes what pairs of
observations, (x, y) are more likely than others.
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+ The joint distribution of two r.v.s, X and Y, describes what pairs of
observations, (x, y) are more likely than others.

+ Shape of the joint distribution ~~ the relationship between X and Y
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Discrete r.v.s

Definition

The joint probability mass function (p.m.f) of a pair of discrete r.v.s, (X, Y)
describes the probability of any pair of values:

Px,y(x,y) =P(X=x,Y =y)
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Discrete r.v.s

Definition

The joint probability mass function (p.m.f) of a pair of discrete r.v.s, (X, Y)
describes the probability of any pair of values:

Px,y(x,y) =P(X=x,Y =y)

+ Properties of a joint p.m.f.:

* px.y(x,y) >0 (probabilities can’t be negative)

C X X, pxy(xy) =1 (something must happen)
- >, isshorthand for sum over all possible values of X
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Example: Gay marriage and gender

Support Gay Oppose Gay

Marriage Marriage

Y=1 Y=0

Female X =1 0.32 019
Male X =0 0.29 0.20

+ Joint p.m.f. can be summarized in a cross-tab:
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Example: Gay marriage and gender

Support Gay Oppose Gay

Marriage Marriage

Y=1 Y=0

Female X =1 0.32 019
Male X =0 0.29 0.20

+ Joint p.m.f. can be summarized in a cross-tab:

- Each is the probability of that combination, py y(x, y)

+ Probability that we randomly select a woman who supports gay
marriage?
pxy(L,1)=P(X=1,Y =1)=032

6/40



Marginal distributions

« Can we get the distribution of just one of the r.v.s alone?
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Marginal distributions

« Can we get the distribution of just one of the r.v.s alone?

- Called the marginal distribution in this context.

+ Computing marginal p.m.f. from the joint p.m.f.

[P(Y:y):Z[P(X:x,Y:y)

+ Intuition: sum over the probability that Y = y and X = x for all
possible values of x

- Called marginalizing out X.
+ Works because values of X are disjoint.
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Example: marginals for gay marriage

Support Gay Oppose Gay

Marriage Marriage | Marginal
Y=1 Y=0
Female X =1 0.32 019
Male X =0 0.29 0.20

Marginal

« What's P(Y =1)?
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Female X =1 0.32 019
Male X =0 0.29 0.20
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Example: marginals for gay marriage

Support Gay Oppose Gay
Marriage Marriage | Marginal
Y=1 Y=0
Female X =1 0.32 019 0.51
Male X =0 0.29 0.20 0.49
Marginal 0.61 0.39

« What's P(Y =1)?

+ Probability that a man supports gay marriage plus the probability that a
woman supports gay marriage.

P(Y=1)=P(X=1,Y=1+P(X=0,Y =1) =0.32+0.29 = 0.61

+ Works for all marginals.
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Conditional p.m.f.

Definition

The conditional probability mass function or conditional p.m.f. of Y
conditional on X is

PX=x,Y=y)

P(Y=y|X=x)= PX =)

for all values x s.t. P(X = x) > 0.
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Conditional p.m.f.

Definition

The conditional probability mass function or conditional p.m.f. of Y
conditional on X is

PX=x,Y=y)

P(Y=y|X=x)= POX =)

for all values x s.t. P(X = x) > 0.

+ This is a valid univariate probability distribution!
o P(Y:y|X:x)20andZy[P(Y:y|X:x):1

+ Can define the conditional expectation of this p.m.f.

ElY [X=x]=)> yP(Y=y|X=x)
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Example: conditionals for gay marriage

Support Gay Oppose Gay
Marriage Marriage | Marginal
Y=1 Y=0
Female X =1 0.32 019 0.51
Male X =0 0.29 0.20 0.49
Marginal 0.61 0.39

+ Probability of favoring gay marriage conditional on male?
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Example: conditionals for gay marriage

Support Gay Oppose Gay
Marriage Marriage | Marginal
Y=1 Y=0
Female X =1 0.32 019 0.51
Male X =0 0.29 0.20 0.49
Marginal 0.61 0.39

+ Probability of favoring gay marriage conditional on male?

P(Y=1|X=0)=

P(X=0,Y =1)

0.29

P(X =0)

= 0.29 +0.20
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Example: conditionals for gay marriage

Support Gay Oppose Gay
Marriage Marriage | Marginal
Y=1 Y=0
Female X =1 0.32 019 0.51
Male X =0 0.29 0.20 0.49
Marginal 0.61 0.39

+ Probability of favoring gay marriage conditional on male?

- . P(XX=0,Y=1) 029
P(Y=1]X=0)= P(X =0) _0.29+0.2o_0‘592
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Example: conditionals for gay marriage

Men Women

1.0 - 1.0
& 081 g 08
S )
a a
= 0.6 = 0.6
s s
Z 0.4 = 0.4
=} =}
5 5
© 0.2+ O 024

0.0 - 0.0 -

0 1 0 1
Gay marriage support (Y) Gay marriage support (Y)

+ Two values of X ~» two univariate conditional distributions of Y
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Bayes and LTP

- Bayes' rule for rv.s:

PX=x|Y=yP(Y=y)
P(X = x)

P(Y=y|X=x)=
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Bayes and LTP

- Bayes' rule for rv.s:

P(X=x|Y =y)P(Y =y)

P(Y=y|X=x)= POX =)

+ Law of total probability for r.v.s:

PX=x)=) PX=x|Y=yPY=y)
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Definition

For two r.v.s X and Y, the joint cumulative distribution function or joint c.d.f.
Fx.y(x,y) is a function such that for finite values x and y,

Fxy(x,y) =P(X <x,Y <y)
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Definition

For two r.v.s X and Y, the joint cumulative distribution function or joint c.d.f.
Fx.y(x,y) is a function such that for finite values x and y,

Fx y(x,y) =P(X <x,Y <)

-+ Well-defined for discrete and continuous X and Y.

+ For discrete we simply have:

Fxy(x,y) = ZZ[P =J)

i<x j<y
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Continuous r.v.s

+ One continuous r.v.: prob. of being in a subset of the real line.
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Continuous r.v.s

+ One continuous r.v.: prob. of being in a subset of the real line.

—

X

+ Two continuous r.v.s: probability of being in some subset of the
2-dimensional plane.
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Continuous joint p.d.f.

Definition

If two continuous rv.s X and Y with joint c.d.f. Fy y, their joint p.d.f.
fx v(x,y) is the derivative of Fy , with respect to x and y,

62
fx,Y(X,Y) = MFX,Y(XJ/)
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Continuous joint p.d.f.

Definition

If two continuous rv.s X and Y with joint c.d.f. Fy y, their joint p.d.f.
fx v(x,y) is the derivative of Fy , with respect to x and y,

62
fx,Y(X,Y) = MFX,Y(XJ)

+ Integrate over both dimensions to get the probability of a region:
PV €A = [ feylxy)ddy.
(x,y)€EA

* {(x,y) : fx .y (x,y) > 0} is called the support of the distribution.
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Properties of the joint p.d.f.

+ Joint p.d.f. must meet the following conditions:
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Properties of the joint p.d.f.

+ Joint p.d.f. must meet the following conditions:

fx.y(x,y) > 0for all values of (x,y), (nonnegative)
f°° L fy v (x,y)dxdy =1, (probabilities “sum” to 1)

e}

1.
2.
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Properties of the joint p.d.f.

+ Joint p.d.f. must meet the following conditions:

1. fxy(x,y) > 0forall values of (x, y), (nonnegative)
2. [T [T fy(x,y)dxdy =1, (probabilities “sum” to 1)

« P(X =x,Y =y)=0for similar reasons as with single r.v.s.
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Joint densities are 3D

+ X and Y axes are on the “floor,” height is the value of f y(x, y).
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Joint densities are 3D

+ X and Y axes are on the “floor,” height is the value of f y(x, y).

* Remember fy y(x,y) # P(X = x, Y = y).
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Probability = volume

4
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* PUXY) €A) =[], en iy (X, y)dxdy
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Probability = volume

0.15
2
F 3 0.10
o l
0.05
-2
4 T T 0.00

* PUXY) € A) = ], ea fxov (X, y)dxdy

+ Probability = volume above a specific region.
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Continuous marginal distributions

« We can recover the marginal PDF of one of the variables by integrating
over the distribution of the other variable:

fY(}’):/ fx,Y(X»Y)dX
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Continuous marginal distributions

« We can recover the marginal PDF of one of the variables by integrating
over the distribution of the other variable:

fY(}’):/ fx,Y(X»Y)dX

» Works for either variable:

Fe(x) = / fy v (%, ¥)dy
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Visualizing continuous marginals

+ Marginal integrates (sums, basically) over other r.v.:

Fo(y) = / fr v (%, y)dx
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Visualizing continuous marginals

+ Marginal integrates (sums, basically) over other r.v.:

Fo(y) = / fr v (%, y)dx

« Pile up/flatten all of the joint density onto a single dimension.
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Continuous conditional distributions

Definition

The conditional p.d.f. of a continuous random variable is

fy v (X,
ety = 2

for all values x s.t. f(x) > 0.

« Implies

b
Pla<Y < bX=x)= / fyix(y|x)dy

21/ 40



Continuous conditional distributions

Definition

The conditional p.d.f. of a continuous random variable is

fy v (X,
ety = 2

for all values x s.t. f(x) > 0.

« Implies

b
Pla<Y < bX=x)= / fyix(y|x)dy

+ Based on the definition of the conditional p.m.f./p.d.f., we have the
following factorization:

fX,Y(Xv}/) = fY|X(Y|X)fx(X)
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Conditional distributions as slices

* fyix(¥|x) is the conditional p.d.f. of ¥ when X = x,
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Conditional distributions as slices

* fyix(¥|x) is the conditional p.d.f. of ¥ when X = x,
* fyx(v|x) is proportional to joint p.d.f. along x;: fx v (v, X))

+ Normalize by dividing by fy(x,) to ensure proper p.d.f.
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Independence

Two rv.s Y and X are independent (which we write X 1L Y) if for all sets A
and B:
P(XeAYeB)=P(XeAP(Y €B)

+ Knowing the value of X gives us no information about the value of Y.
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Independence

Two rv.s Y and X are independent (which we write X 1L Y) if for all sets A
and B:
P(XeAYeB)=P(XeAP(Y €B)

+ Knowing the value of X gives us no information about the value of Y.
« If X and Y are independent, then:

* fey(xy) = f(x)fy(y) and px yv(x,y) = px(x)py(y) (joint is the product
of marginals)

* Fxy(xy) = Fx(x)Fy(y)
+ fyx(y[x) = fy(y) (conditional is the marginal)

+ Conditional independence implies similar to conditional distributions:

PIXEAYEB|Z)=P(XeA|Z)P(Y €B|2)

23/40



2] Expectations of Joint
Distributions



Properties of joint distributions

+ Single rv.: summarized fy(x) with E[X] and V[X]
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Properties of joint distributions

+ Single rv.: summarized fy(x) with E[X] and V[X]
+ With 2 r.v.s: how strong is the dependence is between X and Y?

+ First: expectations over joint distributions.
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Expectations over multiple rv.s

- 2-d LOTUS: take expectations over the joint distribution.
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Expectations over multiple rv.s

- 2-d LOTUS: take expectations over the joint distribution.

+ With discrete X and Y:

Elg(X, Y)] =Y &(x,y) px,y(x,¥)

X y
» With continuous X and Y:

Elg(X, Y)] = / / g(x,) .y (x, y)dxdy

x Jy

+ Marginal expectations:

EYI=)_ > ypxy(xy)
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Applying 2D LOTUS

Theorem

If X and Y are independent r.v.s, then

E[XY] = E[X]E[Y].
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3/ Covariance and
Correlation



Why (in)dependence?

+ Independence assumptions are everywhere in statistics.
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+ Independence assumptions are everywhere in statistics.

+ Each response in a poll is considered independent of all other
responses.

* In a randomized control trial, treatment assignment is independent of
background characteristics.

« Lack of independence is a blessing or a curse:

+ Two variables not independent ~~ potentially interesting relationship.
+ In observational studies, treatment assignment is usually not
independent of background characteristics.

27/ 40
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Defining covariance

- How do we measure the strength of the dependence between two r.v.?
Covariance

The covariance between two r.v.s, X and Y is defined as:

Cov[X, Y] = [E[(X —EX])(Y — [E[YD}

-+ How often do high values of X occur with high values of Y?

+ Properties of covariances:

« Cov[X, Y] = E[XY]—E[X]E[Y]
« If X 1L Y, then Cov[X, Y] =0
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Properties of variances and covariances

Cov[X, Y] = E[(X — E[X])(Y — E[Y])] = E[XY] — E[X]E[Y]

+ Properties of covariances:
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1. Cov[X, X] = V[X]

2. Cov[X, Y] = Cov[Y, X]

[
[
3. Cov[X,c| = 0 for any constant c
4. Cov[aX, Y] = aCov[X, Y].
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Properties of variances and covariances

Cov[X, Y] = E[(X — E[X])(Y — E[Y])] = E[XY] — E[X]E[Y]

+ Properties of covariances:

1. Cov[X, X] = V[X]
2. Cov[X, Y] = Cov[Y, X]
3. Cov[X,c| = 0 for any constant c
4. Cov[aX, Y] = aCov[X, Y].
5. Cov[X + Y, Z] = Cov[X, Z] + Cov]Y, Z]

6. Cov

X+Y,Z+ W] =Cov[X, Z] + Cov[Y, Z] + Cov[X, W] + Cov[Y, W]
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Covariances and variances

+ Can now state a few more properties of variances.

+ Variance of a sum:

VIX + Y] = V[X] + V[Y] + 2Cov[X, Y]

+ More generally for nrv.s Xi, ..., X,:

ne

VIXp + o+ X, = VX + o+ VX2 Cov(X;, X))

i<j

« If X and Y independent, V[X + Y] = V[X] + V[Y].

+ Beware: V(X — Y] = V[X] + V[Y] as well.

33/40



Zero covariance doesn't imply independence

+ We saw that X 1L Y ~~ Cov[X, Y] = 0.

34/ 40



Zero covariance doesn't imply independence

+ We saw that X 1L Y ~~ Cov[X, Y] = 0.

+ Does Cov[X, Y] = 0 imply that X 1L Y?

34/ 40



Zero covariance doesn't imply independence

+ We saw that X 1L Y ~~ Cov[X, Y] = 0.

+ Does Cov[X, Y] = 0 imply that XL Y? No!

34/ 40



Zero covariance doesn't imply independence

+ We saw that X 1L Y ~~ Cov[X, Y] = 0.
+ Does Cov[X, Y] = 0 imply that XL Y? No!

- Counterexample: X ¢ {—1,0,1} with equal probability and Y = X2.

34/ 40



Zero covariance doesn't imply independence

+ We saw that X 1L Y ~~ Cov[X, Y] = 0.
+ Does Cov[X, Y] = 0 imply that XL Y? No!
- Counterexample: X ¢ {—1,0,1} with equal probability and Y = X2.

- Covariance is a measure of linear dependence, so it can miss
non-linear dependence.

34/ 40



+ Correlation is a scale-free measure of linear dependence.
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+ Correlation is a scale-free measure of linear dependence.
Definition
The correlation between two rv.s X and Y is defined as:

Cov[X,Y] X —E[X] Y—E[Y]
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+ Correlation is a scale-free measure of linear dependence.

Definition

The correlation between two r.v.s X and Y is defined as:

oy SV (X EX] Y —ElY]
p=pX,Y)= VIXVDY] —C°V< SDIX] ' SD[Y] )

- Covariance after dividing out the scales of the respective variables.

+ Correlation properties:

c —1<p<l1
+ |p(X,Y)| =1ifand only if X and Y are perfectly correlated with a
deterministic linear relationship: Y = a + bX.
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4] Random vectors



Multivariate random vectors

+ Can group r.v.s into random vectors X = (X, ..., X))’
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Multivariate random vectors

+ Can group r.v.s into random vectors X = (X, ..., X))’

- Xis a function from the sample space to R¥
+ x is now a length-k vector and potential value of X
+ Generalizes all ideas from 2 variables to k

« Joint distribution function: F(x) = P(X < x) = P(X; < x, ..., X;, < xp).

+ Discrete: joint p.m.f. P(X = x).
+ Continuous: joint p.d.f.

8k

Flx) = 0xq -+ Oxy

F(x)

 Expectation of a random vector is just the vector of expectations:

E[X] = (E[X], E[X]; ..., [E[XkD/
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Covariance matrices

« Covariance matrix generalizes (co)variance to this setting:

VIX] = E[(X — E[X])(X — E[X])’]

2 __ _
where, o7 = V[X/] and o;; = Cov(X], X;).
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Covariance matrices

« Covariance matrix generalizes (co)variance to this setting:

VIX] = E[(X — E[X])(X — E[X])’]

+ We usually write V[X] = Z and it is a k x kK symmetric matrix:

P
01 Op = Oy
2
O' O' “en o'
T _ _21 2 .2k
e 2
Ok Ok Ok

2 __ _
where, o7 = V[X/] and o;; = Cov(X], X;).

+ Symmetric (£ = Z’) because Cov(X;, X;) = Cov(X;, X;).
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Multivariate standard normal distribution

« LetZ = (2, 2,...,Z,) beiid. N(0,1). What is their joint distribution?
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Multivariate standard normal distribution

« LetZ = (2, 2,...,Z,) beiid. N(0,1). What is their joint distribution?
- For vector of values z = (2,2, ..., z) "

1

f(z) = CoLE exp (—2/72)

- Easy to see the mean/variance: E£[Z] = 0 and V[Z] = I,.

* I, is the k by k identity matrix because V[Z;] = 1 and Cov(Z;, Z;) = 0.

38/ 40



Linear transformations of random vectors

Theorem

If X € R¥ with k x 1 expectation pu and k x k covariance matrix X, and A is a

g x k matrix, then AX is a random vector with mean Au and covariance
matrix AZA’.
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Linear transformations of random vectors

Theorem

If X € R¥ with k x 1 expectation pu and k x k covariance matrix X, and A is a

g x k matrix, then AX is a random vector with mean Au and covariance
matrix AZA’.

« LetZ ~ N(0,1,) and X = u+ BZ, where B is g x k then X ~ V' (u, BB’)

« M: g x 1 mean vector E[X] = u
+ V[X] = BB’: g x g covariance matrix.

+ More generally, if X ~ N (u,Z) then Y =a+ BX ~ N (a+ Bu,BZB’)
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Properties of the multivariate normal

« If (Xq, X5, X5) are MVN, then (X, X,) is also MVN.
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Properties of the multivariate normal

« If (Xq, X5, X5) are MVN, then (X, X,) is also MVN.

« If (X, Y) are multivariate normal with Cov(X, Y) =0, then X and Y are
independent.
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