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Where are we? Where are we going?

• Recently: how to build estimators to estimate parameters.

• Also learned properties of these estimators in finite and large samples.

• Now: how to use estimates to test a particular hypothesis about a
parameter.

• We’ll draw on our probability knowledge from earlier in the term!
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1/ Hypothesis Testing
Examples



The lady tasting tea

• Biologist Muriel Bristol claimed she could tell whether tea or milk was
added first to a cup.

• R.A. Fisher was skeptical so he devised a test:

• Prepare 8 cups of tea, 4 milk-first, 4 tea-first
• Present cups in a random order, asked her to pick which 4 are milk-first

• She guessed all correctly!

• This is our data. What can we learn from it?
• There is uncertainty: she could have guessed randomly.
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Taste tests

• Statistical thought experiment: how often would she get all 4 correct if
she were guessing randomly?

• Only one way to choose all 4 correct cups, but 70 ways of choosing 4
cups among 8.

• Choosing at random ≈ picking each of these 70 with equal probability.

• Chances of guessing all 4 correct is 𝟣
𝟩𝟢 ≈ 𝟢.𝟢𝟣𝟦 or 1.4%.

• ⇝ the guessing at random hypothesis might be implausible.
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Social pressure effect
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Social pressure effect

load(”../assets/gerber_green_larimer.RData”)
social$voted <- 1 * (social$voted == ”Yes”)
neigh.mean <- mean(social$voted[social$treatment == ”Neighbors”])
contr.mean <- mean(social$voted[social$treatment == ”Civic Duty”])
neigh.mean - contr.mean

## [1] 0.0634

• Treatment effect of 6.3 percentage points.

• But the estimator varies from sample to sample by random chance.

• Could it be this big by random chance if there was no effect at all?
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Difference in means
• Treated group 𝘠𝟣, 𝘠𝟤, … , 𝘠𝘯𝘺

i.i.d. with population mean 𝜇𝘺 and
population variance 𝜎𝟤

𝘺

• Control group 𝘟𝟣, 𝘟𝟤, … , 𝘟𝘯𝘹
i.i.d. with population mean 𝜇𝘹 and

population variance 𝜎𝟤
𝘹

• Quantity of interest: population differences in average turnout

𝜏 = 𝔼[𝘠𝘪 ] − 𝔼[𝘟𝘪 ]

• Estimator: sample difference in means: 𝜏𝘯 = 𝘠 𝘯𝘺
− 𝘟 𝘯𝘹

• We estimate the standard error of 𝜏𝘯 with:

ŝe[𝜏𝘯] = √ 𝘴𝟤𝘺
𝘯𝘺

+ 𝘴𝟤𝘹
𝘯𝘹
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ŝe[𝜏𝘯] = √ 𝘴𝟤𝘺
𝘯𝘺

+ 𝘴𝟤𝘹
𝘯𝘹

7 / 35



Difference in means
• Treated group 𝘠𝟣, 𝘠𝟤, … , 𝘠𝘯𝘺

i.i.d. with population mean 𝜇𝘺 and
population variance 𝜎𝟤

𝘺

• Control group 𝘟𝟣, 𝘟𝟤, … , 𝘟𝘯𝘹
i.i.d. with population mean 𝜇𝘹 and

population variance 𝜎𝟤
𝘹

• Quantity of interest: population differences in average turnout

𝜏 = 𝔼[𝘠𝘪 ] − 𝔼[𝘟𝘪 ]

• Estimator: sample difference in means: 𝜏𝘯 = 𝘠 𝘯𝘺
− 𝘟 𝘯𝘹

• We estimate the standard error of 𝜏𝘯 with:
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2/ Hypothesis Testing
Framework



What is a hypothesis?

• A hypothesis is just a statement a population parameter, 𝜃.

• We might have hypotheses about causal inferences:

• Does social pressure induce higher voter turnout? (mean turnout higher
in social pressure group compared to Civic Duty group?)

• Do treaties constrain countries? (behavior different among treaty
signers?)

• We might also have hypotheses about other parameters:

• Is the share of Biden supporters more than 50%?
• Are traits of treatment and control groups different?
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Hypothesis testing procedure

1. Choose null and alternative hypotheses

2. Choose a test statistic, 𝘛𝘯
3. Choose a test level, 𝛼
4. Determine rejection region
5. Reject if 𝘛𝘯 in rejection region, fail to reject otherwise
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Null and alternative hypotheses

• The null hypothesis is the hypothesis we want to test.

• This is usually “no effect/difference/relationship.”
• We denote this hypothesis as 𝘏𝟢 ∶ 𝜃 = 𝜃𝟢.
• 𝘏𝟢: Social pressure doesn’t affect turnout (𝘏𝟢 ∶ 𝜏 = 𝟢)

• The alternative hypothesis is the complement of the null hypothesis

• Usually, “there is a relationship/difference/effect.”
• We denote this as 𝘏𝟣 ∶ 𝜃 ≠ 𝜃𝟢.
• 𝘏𝟣: Social pressure affects turnout (𝘏𝟣 ∶ 𝜏 ≠ 𝟢)

• One-sided vs. two-sided alternatives:

• One-sided: 𝘏𝟣 ∶ 𝜃 > 𝜃𝟢 or 𝘏𝟣 ∶ 𝜃 < 𝜃𝟢
• Two-sided: 𝘏𝟣 ∶ 𝜃 ≠ 𝜃𝟢
• Two-sided much more common, one-sided involves ignoring evidence in
one direction.
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General framework

• Hypothesis tests choose to reject or not reject the null hypothesis
based on the observed data.

• Statistical thought experiments: Assume we know (part of) the true DGP.

• Rejection based on a test statistic, 𝘛𝘯 = 𝘛(𝘠𝟣, … , 𝘠𝘯).

• Will help us adjudicate between the null and the alternative.
• Typically: larger values of 𝘛𝘯 ⇝ null less plausible.
• A test statistic is a r.v.

• Intuitively, reject null of no effect when |𝘠 − 𝘟| is large.
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Rejection

• Rejection region 𝘙 is the region of the sample space in which we reject
the null.

• If our data is in 𝘙 , we reject 𝘏𝟢
• If our data is not in 𝘙 , we retain/fail to reject 𝘏𝟢.

• Regions often based on the test statistic. For scalar hypotheses:

• One-sided tests: 𝘛𝘯 > 𝘤
• All the samples of size 𝘯 leading to a 𝘛𝘯 greater than 𝘤 .
• Two-sided tests: |𝘛𝘯| > 𝘤

• The 𝘤 here is the critical value that defines the rejection region, 𝘊 :

• One-sided 𝘊 = {𝘵 ∶ 𝘵 > 𝘤}, two-sided: 𝘊 = {𝘵 ∶ |𝘵| > 𝘤}.
• Reject when 𝘛𝘯 ∈ 𝘊 .
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Type I and Type II errors

𝘏𝟢 True 𝘏𝟢 False
Retain 𝘏𝟢 Awesome! Type II error
Reject 𝘏𝟢 Type I error Good stuff!

• Type I error: rejecting the null hypothesis when it is in fact true.

• No treatment effect, but we reject the null

• Type II error not rejecting the null hypothesis when it is false.

• Treatment effect is nonzero, but we cannot reject the null

• Consequences depend the context:

• Treatment effects: false discovery (type I) vs undetected finding (type II).
• Medical diagnosis: false positive (type I) vs false negative (type II).
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Features of a test

• Good tests: reject null when they should, retain when they shouldn’t.

• Power function of a test: probability of rejection as a function of 𝜃:

𝜋(𝜃) = ℙ (Reject 𝘏𝟢 ∣ 𝜃) = ℙ (𝘛𝘯 ∈ 𝘊 ∣ 𝜃)

• Hypotheticals! if we knew 𝜃, what is the probability of rejecting the null?
• The power of a test against an alternative 𝜃𝟣 ∈ 𝘏𝟣 is 𝜋(𝜃𝟣)
• We want to maximize power against alternative

• Size of a test is the probability of a Type I error:

𝜋(𝜃𝟢) = ℙ (Reject 𝘏𝟢 ∣ 𝜃𝟢)

• Size of two-sided test: ℙ(|𝘛𝘯| > 𝘤 ∣ 𝜃𝟢)
• Size of one-sided test: ℙ(𝘛𝘯 > 𝘤 ∣ 𝜃𝟢)
• We want to minimize the size of a test.
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Test statistic example

• What is an example of a test statistic and how we know its distribution?

• By the CLT, the difference in means is asymptotically normal:

𝜏𝘯 − 𝜏
ŝe[𝜏𝘯]

𝘥→ 𝒩(𝟢, 𝟣)

• Under the null of 𝘏𝟢 ∶ 𝜏 = 𝔼[𝘠𝘪 ] − 𝔼[𝘟𝘪 ] = 𝟢, then asymptotically:

𝘛𝘯 = 𝜏𝘯
ŝe[𝜏𝘯]

𝘥→ 𝒩(𝟢, 𝟣)

• Under an alternative 𝘏𝟣 ∶ 𝜏 = 𝜏𝟣:

𝘛𝘯
𝘥→ 𝒩 ( 𝜏𝟣

se(𝜏 ) , 𝟣)

15 / 35



Test statistic example

• What is an example of a test statistic and how we know its distribution?

• By the CLT, the difference in means is asymptotically normal:

𝜏𝘯 − 𝜏
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ŝe[𝜏𝘯]

𝘥→ 𝒩(𝟢, 𝟣)

• Under the null of 𝘏𝟢 ∶ 𝜏 = 𝔼[𝘠𝘪 ] − 𝔼[𝘟𝘪 ] = 𝟢, then asymptotically:

𝘛𝘯 = 𝜏𝘯
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Size-power trade-off

Size

T under the null hypothesis

θ0 c

Retain Reject

P(Tn  |  θ0)

Power

T under an alternative

θ0 θ1 c

Retain Reject

P(Tn  |  θ0) P(Tn  |  θ1)
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Controlling the size of a test

• Generally cannot simultaneously reduce both types of errors.

• Classical Neyman-Pearson approach: fix the rate of Type I errors.

• Significance level 𝛼 is researcher-selected maximum size of a test.

• Convention in social sciences is 𝛼 = 𝟢.𝟢𝟧, but nothing magical there
• Particle physicists at CERN use 𝛼 ≈ 𝟣

𝟣,𝟩𝟧𝟢,𝟢𝟢𝟢

• Frequentist justification: in the long run, at most 𝟣𝟢𝟢 × 𝛼% decisions
will be Type I errors

• Fisher (and Bayesians) didn’t like this: relied on repeated sampling.
• Still the dominant approach in the social sciences.
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One-sided tests
Size

T under the null hypothesis

θ0 c

Retain Reject

P(Tn  |  θ0)

• How to select 𝘤 to make 𝛼 = 𝟢.𝟢𝟧?

• Let 𝘎𝟢(𝘵) = ℙ(𝘛𝘯 ≤ 𝘵 ∣ 𝜃𝟢) be the c.d.f. under the null.
• We want to find 𝘤 that puts 𝛼 probability in the tail: 𝟣 − 𝘎𝟢(𝘤) = 𝛼.
• Use the quantile function: 𝘤 = 𝘎−𝟣

𝟢 (𝟣 − 𝛼)

• If 𝘎𝟢 ∼ 𝘕(𝟢, 𝟣) and 𝛼 = 𝟢.𝟢𝟧, then 𝘤 = Φ−𝟣(𝟢.𝟫𝟧) = 𝟣.𝟨𝟦𝟧

• Reject null if 𝘛𝘯 > 𝟣.𝟨𝟦𝟧, fail to reject if 𝘛𝘯 ≤ 𝟣.𝟨𝟦𝟧
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Two-sided rejection region
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• What’s the rejection region |𝘛𝘯| > 𝘤 if 𝛼 = 𝟢.𝟢𝟧?

• For symmetric 𝘎𝟢 and given 𝘤 , we have test size 𝜋(𝜃𝟢) = 𝟤(𝟣 − 𝘎𝟢(𝘤))

• Critical values: 𝘤 = 𝘎−𝟣
𝟢 (𝟣 − 𝛼/𝟤)

• Find 𝘤 such that 𝛼/𝟤 is in each tail
• For 𝘎𝟢 ∼ 𝒩(𝟢, 𝟣) and 𝛼 = 𝟢.𝟢𝟧, then 𝘤 = 𝟣.𝟫𝟨
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Final hypothesis test

1. Hypotheses: 𝘏𝟢 ∶ 𝜏 = 𝟢 vs. 𝘏𝟣 ∶ 𝜏 ≠ 𝟢

2. Test statistic: 𝘛𝘯 = 𝜏𝘯/ŝe[𝜏𝘯]

3. Use 𝛼 = 0.05

4. Rejection region is |𝘛𝘯| > 𝟣.𝟫𝟨.
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Social pressure test

• Calculate test statistic for social pressure mailers:

neigh_var <- var(social$voted[social$treatment == ”Neighbors”])
neigh_n <- sum(social$treatment == ”Neighbors”)
civic_var <- var(social$voted[social$treatment == ”Civic Duty”])
civic_n <- sum(social$treatment == ”Civic Duty”)
se_diff <- sqrt(neigh_var/neigh_n + civic_var/civic_n)

## Calcuate test statistic
(0.378-0.315)/se_diff

## [1] 18.3

• |𝘛𝘯| = 18.343 > 1.96⇝ REJECT!
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t-test/Wald test

• Consider any asymptotically normal estimator ̂𝜃 for parameter 𝜃.

• Consider testing 𝘏𝟢 ∶ 𝜃 = 𝜃𝟢 vs. 𝘏𝟣 ∶ 𝜃 ≠ 𝜃𝟢.

• A size-𝛼 t-test (or Wald test) rejects 𝘏𝟢 when |𝘛𝘯| > 𝘤 where

𝘛𝘯 =
̂𝜃 − 𝜃𝟢
ŝe[ ̂𝜃]

• Critical value 𝘤 calculated in the exact same way as above.

• For 𝘡 ∼ 𝒩(𝟢, 𝟣), let 𝘤 = 𝘻𝛼/𝟤 such that ℙ(𝘡 ≤ 𝘻𝛼/𝟤) = 𝟣 − 𝛼/𝟤.

• Size of the test converges to the nominal size as 𝘯 → ∞:

ℙ(|𝘛𝘯| > 𝘻𝛼/𝟤 ∣ 𝜃𝟢) → 𝛼
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3/ p-values



Why p-values?

• Just rejecting or not rejecting the null hypothesis is not too informative.

• We rejected null of no population diff-in-means (𝘏𝟢 ∶ 𝜏 = 𝟢) at 𝛼 = 0.05.
• What about all the other levels like 𝛼 = 0.01?

• Alternative: p-values are the probability of observing 𝘛𝘯 or more
extreme under 𝘏𝟢:

𝘱 =
⎧{
⎨{⎩

𝟣 − 𝘎𝟢(𝘛𝘯) if one-sided
𝟤(𝟣 − 𝘎𝟢(|𝘛𝘯|)) if two-sided

• Interpretation: smallest size 𝛼 at which a test would reject the null.

• Can immediately assess tests of all sizes, no need for strict cutoffs.
• A continuous measure of evidence against the null.
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Calculate the p-value

• Social pressure test statistic, 𝘵obs = 𝟣𝟪.𝟧.

• How likely would it be to get a test statistic this extreme or more
extreme if there were no treatment effect?

ℙ(|𝘛𝘯| > 𝟣𝟪.𝟧 ∣ 𝜏𝟢) = ℙ(𝘛𝘯 > 𝟣𝟪.𝟧 ∣ 𝜏𝟢) + ℙ(𝘛𝘯 < −𝟣𝟪.𝟧 ∣ 𝜏𝟢)
= 𝟤 × ℙ(𝘛𝘯 < −𝟣𝟪.𝟧 ∣ 𝜏𝟢)

• Use the pnorm() function:

2 * pnorm(-18.5)

## [1] 2.06e-76
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Calculate the p-value
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Be careful with p-values

• Low p-value⇝ data unlikely given the null⇝ evidence against the
null.

• p-values are not:

• An indication of a large substantive effect
• The probability that the null hypothesis is false
• The probability that the alternative hypothesis is true

• p-values are just a transformation of the test statistic to the [𝟢, 𝟣] scale.

• p-hacking controversy: not about p-values per se, but about
significance cutoffs
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4/ Power Analyses



Effect sizes

• Why use sample sizes of 38,000 for each treatment condition?

• Choose the 𝘯 to ensure you can reject the null under a hypothesized
effect size.

• Small effect sizes (half percentage point) will require huge 𝘯
• Large effect sizes (10 percentage points) will require smaller 𝘯

• If we fail to reject a null hypothesis, two possible states of the world:

• Null is true (no treatment effect)
• Null is false (there is a treatment effect), but test had low power.
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Power analysis

• Power analysis: evaluate the power function for various sample sizes.

• Prob. of rejecting different possible effects at different sample sizes.
• Can be done before the experiment to plan for sample sizes

• Easiest to see in a one-sided test of 𝘏𝟢 ∶ 𝜃 = 𝟢.

• Let 𝘛𝘯 = ̂𝜃/ŝe[ ̂𝜃] be the test statistic and the power function is:

𝜋𝘯(𝜃) = ℙ[𝘛𝘯 > 𝘤 ∣ 𝜃]

• If 𝘛𝘯 is approximately 𝒩(𝟢, 𝟣) under the null, then under 𝘏𝟣 ∶ 𝜃 = 𝜃𝟣,

𝘛𝘯
𝘢∼ 𝒩 ( 𝜃𝟣

ŝe[ ̂𝜃]
, 𝟣) ⇝ 𝜋𝘯(𝜃𝟣) = 𝟣 − Φ (𝘤 − 𝜃𝟣

ŝe[ ̂𝜃]
)

29 / 35



Power analysis

• Power analysis: evaluate the power function for various sample sizes.

• Prob. of rejecting different possible effects at different sample sizes.

• Can be done before the experiment to plan for sample sizes

• Easiest to see in a one-sided test of 𝘏𝟢 ∶ 𝜃 = 𝟢.
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ŝe[ ̂𝜃]
)

29 / 35



Power analysis

• Power analysis: evaluate the power function for various sample sizes.

• Prob. of rejecting different possible effects at different sample sizes.
• Can be done before the experiment to plan for sample sizes

• Easiest to see in a one-sided test of 𝘏𝟢 ∶ 𝜃 = 𝟢.
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Power analysis
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Exact tests under the normal model

• Asymptotics are approximations. Can we ever get exact inferences at
any sample size?

• Assume parametric model: 𝘟𝟣, … , 𝘟𝘯 are i.i.d. samples from 𝘕(𝜇, 𝜎 𝟤)

• Under null of 𝘏𝟢 ∶ 𝜇 = 𝜇𝟢, we have

𝘛𝘯 = 𝘟 𝘯 − 𝜇𝟢
𝘴𝘯/√𝘯 ∼ 𝘵𝘯−𝟣

• Student’s t-distribution with 𝘯 − 𝟣 degrees of freedom.

• Null distribution is 𝘵 so we use quantiles of 𝘵 for critical values.

• For one-sided test 𝘤 = 𝘎−𝟣
𝟢 (𝟣 − 𝛼) but now 𝘎𝟢 is 𝘵 with 𝘯 − 𝟣 df.

• Basically: use qt() instead of qnorm() for critical values.
• Asymptotically equivalent to using the normal, but more conservative
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𝟢 (𝟣 − 𝛼) but now 𝘎𝟢 is 𝘵 with 𝘯 − 𝟣 df.

• Basically: use qt() instead of qnorm() for critical values.
• Asymptotically equivalent to using the normal, but more conservative
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The shape of the t
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