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Where are we? Where are we going?

+ Learned about estimation and inference in general.
+ Now: building to a specific estimator, least squares regression.

- First we need to understand what a “linear model” is and when/why we
need it.

+ No estimators quite yet. First, let's understand what we are estimating.

+ Linear model is ubiquitous but poorly understood. Lots of subtlety
here.
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Regression derivatives and partial effects

+ Goal of regression: how mean of Y changes with X.

ux) = E[Y | X = x

+ For continuous regressors, we can use the partial derivative:

ou(xy, .y X¢)
0x

- For binary X;, we can use the difference in conditional expectations:
UL, X, o, X ) — (0, X, ..., X))

- “Partial effect” of X; holding other included variables constant

- Exact form will depend on the functional form of u(x).

+ How do we decide what form u(x) should take?
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Estimating the CEF for discrete covariates

- To motivate function form, useful to think about estimation.
+ How do we estimate u(x) = E[Y|X = x] for binary X?

- Subclassification: calculate sample averages with levels of X::
_ 1 ¢
A1) == VX
m =

= EI.":I X; is the number of units with X; = 1 in the sample.

+ More generally for any discrete X;:

- YL YA = x)
px) = —F——
P IX: = x)
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Continuous covariates

« What if X is continuous? Subclassification fall apart.

+ Each i has a unique value: Z?’:l I(Xi=x)=1
+ Very noisy estimates
+ What about any x not in the sample?

- Stratification: bin X; into categories and treat like as discrete.

+ Every x in the same bin gets the same conditional expectation.
- Depends on arbitrary bin cutoffs/sizes.

- Example:

+ Personal data science: | wear an activity tracker and have a smart scale.
- Relationship between my weight and active minutes in the previous day.
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Continuous covariate CEF: interpolation

174

172

Weight

168

166 -

T
20

T T T
40 60 80
Active Minutes Previous Day

T
100

1
120

7129



ion

)
(1~}
(&

E
®
S

)

(7]

te CEF:

Inuous covaria

Cont

8
°
°
°
W O co
g ¢ o
5 ° °
>
°
° SooJ
°
¢ °dae
—e
° ® & %
° e 8 3%, ° o C
g w 220 pet e
=] s emoo °
g ey Sheatey e
onf.. p®dp
2. 08.° 20° L
° uoooo o.mﬂo oo .
H g0
o O o00® 0080 0" 0
> ° °
] ® oo no\
¢ o ® .
o0
o o % °
T T T T 1
2 N R 3 8
WseM

40 60 80 100 120

Active Minutes Previous Day

20

8/29



ion

)
(1~}
(&

E
®
S

)

(7]

te CEF:

Inuous covaria

Cont

Very Active

Active

Lazy

174

166 -

40 60 80 100 120

Active Minutes Previous Day

20

9/29



Linear CEFs

- Statification requires lots of choices/hidden assumptions.

+ Number of categories, cutoffs for the categories, constant means within
strata, etc.

- Alternative: assuming that the CEF is linear:
p(x) = E[Y;[X; = x] = By + By x

« Intercept, B,: the condition expectation of Y; when X; =0

- Slope, B;: change in the CEF of Y; given a one-unit change in X;
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Why is linearity an assumption?

- Example: Y; is income, X; is years of education.

+ B,: average income among people with 0 years of education.
+ B;: expected difference in income between two adults that differ by 1
year of education.

« Why is linearity an assumption?

E[Y;X; = 12] — E[Y;| X, = 11] = E[Y;|X; = 16] — E[V{| X; = 15]
:.31

- Effect of HS degree is the same as the effect of college degree.

- Put another way: average partial effects are constant %% — g,
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Linear CEF with nonlinear effects

+ What if we think the effect is nonlinear?

+ We can include nonlinear transformations:
u(x) = By + xBy + x*B,

- Partial effect now varies: du(x)/0x = By + 2xB,
- Linear means linear in the parameters g = (B, ..., Bx), hot X.

+ We can also include interactions between covariates:
M(xg, %) = By + x1B1 + Xy + X183

- Average partial effect of X; depends on X,: du(x, x,)/0x; = By + x5
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Linear CEF with a binary covariate

- Wait-times (Y;) and race (X; = 1 for white, X; = 0 for POC)
- Two possible values of the CEF: y, for whites and u, for POC.

+ Can write the CEF as follows:
p(x) = xpy + (1 — x)tg = po + x (U — to) = By + xBy

+ No assumptions, just rewriting! Interpretations:

By = Hy: expected wait-time for POC
© By = py — Mgt diff. in avg. wait times between whites and POC.

+ > 2 categories: dummies for all but category and everything is linear.

13/29



Linear CEF with multiple binary covariates

+ What if we have two binary covariates, X; (race) and X, (1 urban/0
rural):
Uge ifx; =0and x, = 0 (POC, rural)
white, rural)
POC, urban)
uy  if xg =1and x, = 1 (white, urban)

U ifxy=1andx, =0
p(xg, xp) = .
Uy ifxy=0andx, =1

(
(
(
(

+ Can rewrite this without assumptions as a linear CEF with interaction:

p(xa, %) = By + x1B1 + 0By + x1%B3

* Interpretations:

* By = Mgo: average wait times for rural POC.

* By = Py — Moot diff. in means for rural whites vs rural POC.

* B, = Ho1 — Moo diff. in means for urban POC vs rural POC.

© B3 = (11 — Mo1) — (U1g — Mgo): diff. in urban racial diff. vs rural racial diff.

- Generalizes to p binary variables if all interactions included (saturated) ., ,,



Linear approximation

+ Outside of saturated discrete settings, CEF almost never truly linear.
+ Alternative goal: find best linear predictor of Y given X.

+ Formally, linear function of X that minimizes squared prediction errors:

(Bo, B1) = arbgTin E[(Y — (by + by X))?]
« m(x) = B, + B, X is called the linear projection of Y onto X.

« B, = Cov(X, Y)/V[X]
* Bo = My — HxP1, where py, = E[Y] and py = E[X]
- In general, m(x) distinct from the CEF:
+ CEF, u(x) is the best predictor of Y; among all functions.

+ Linear projection is best predictor among linear functions.
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Linear approximation
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Linear approximation
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Linear approximation
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Best linear predictor

+ We'll almost always condition on a vector X = (X, ..., X,)":
m(x) = m(xy, ..., %) = xPy + -+ xB =x'B

« Linear predictor when X = x
+ Xis now a k x 1 random vector of covariates:

+ May contain nonlinear transformations/interactions of “real” variables.
- Typically, X; = 1 and is the intercept/constant.

- Assumptions (“Regularity conditions”):

1. E[Y?] < oo (outcome has finite mean/variance)

2. E|X|? < oo (X has finite means/variances/covariances)

3. Qxx = E[XX] is positive definite (columns of X are linearly
independent)
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Linear Projection

+ How to find B? Minimize squared prediction error!

B=argminkE [(Y — X’b)z]
beRk

« After some calculus:
B = QxkQxy = (E[XX')) " E[XY]

« E[XX']is k x kand E[XY]is k x 1
+ Notes about the m(x) = x'B:

+ Bis a population quantity and possible quantity of interest.
+ Well-defined under very mild assumptions!
- Not necessarily a conditional mean nor a causal effect!
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Projection errors

- Projection error: e=Y — X'8
+ Decomposition of Y into the linear projection and error: Y = X'B+ e

+ Properties of the projection error:

« E[Xe] =0
+ E[e] = 0 when X contains a constant.
+ Together, implies Cov(X;,e) =0forallj=1,..., k

« Distinct from CEF errors: u = Y — u(X) which had the additional
property: E[u | X] =0

+ Zero conditional mean is stronger: CEF errors are 0 at every value of X
+ [E[Xe] = 0 just says they are uncorrelated.
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Regression coefficients

+ Sometimes useful to separate the constant:
Y=B+XB+e

where X doesn’t have a constant.

+ Solution for B more interpretable here:

p = V[X]_l(:OV(X, Y), BO = HY - l“‘;(p
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Interpretation of the coefficients

+ Interpretation of B; depends on what nonlinearities are included.
+ Simplest case: no polynomials or interactions.

* B; is the average change in predicted outcome for a one-unit change in
X; holding other variables fixed.

+ Let's compare:

m(x; +1,%) =By + B1(x + 1) + Box,
m(xy, %) = By + Brx1 + BoXo,

« Then:
m(x; +1,%) — m(x, %) = By

+ Holds for all values of x, and even if we add more variables.
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Interpretation with nonlinear terms

+ What if we include a nonlinear function of one covariate?
m(x, x7, %) = By + Brx1 + Boxf + B3xz,

+ One-unit change in x; is more complicated:

m(x; +1,0q +1)%,%) = By + B1(xy + 1) + B + 1) + B3x,
m(xy, X7, %) = By + Brx + Boxi + Bsxp,

« Better to think of the marginal effect of X:

Om(xq, x2, x,)
#2 =PB1+2Bx

* Interpretations:

. B;: “effect” of X;; on predicted Y; when X;; = 0 (holding X, fixed)
+ B,/2: how that “effect” changes as X;; changes

+ Maybe better to visualize than to interpret
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Interpretation with interactions

+ What if we include an interaction between two covariates?
m(xq, X, X1%p) = By + Brxq + Baxa + B3xyx

+ Two different marginal effects of interest:

Im(x, %, X1%)

%, =By + Bsxy;
Om(xy, Xp, Xy X:
Bmix, Xp, X Xp) 18); %) =P+ Bsxi

* Interpretations:

- B;: the marginal effect of X;; on predicted Y; when X;, = 0.

+ B,: the marginal effect of Xj, on predicted Y; when X;; = 0.

+ Bs;: the change in the marginal effect of X;; due to a one-unit change in
X, OR the change in the marginal effect of X;, due to a one-unit change
in Xj,.
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Partitioned Regression

(a,B,y) = argmin E[(Y; — (a+ bX; + cZ)))?]
(a,b,c)eR?

+ Can we get an expression for just 8? With some tricks, yes!
+ Population residuals from projection of X; on Z;:

)’\(; =X, — (8 +6,Z) where (&),8,)=argmin E[(X; — (dy + d,Z,))’]
(dy,dy)ER?

- X is now orthogonal to Z,.
- Project Y onto these residuals gives B as coefficient:

_cov(Y;, X)

P=vx)

- Works if Z; is a vector and X, = X; — my(Z,).

« my(Z;) is the BLP of X; on Z;
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Omitted variable bias

+ Consider two projections/regressions with and without some Z:

[ I

m(X‘ Z') = X:p + Ziyv m—z(xi) = X;sv

- How do B and & relate? Use law of iterated projections:
(EX, X)) ™ E[X; V]

(EX,X]]) ™ EIX;(XiB+ Ziy +¢)]

(EXX) ™ (EXX])B + EX,Z]y + E[X;e))
B+ (EXX]) "EX,Z]y

coefs fromZ~X

S =

+ Leads to the “omitted variable bias” formula:

§=B+my, mw=(EXX]) EXZ]

+ § — B =y is the “bias” but this is misleading.

+ B not necessarily “correct”, we're just relating two projections
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Best linear approximation

+ What is the relationship between m(X) and u(X) = E[Y | X]?

« If u(X) is linear, then u(X) = m(X) = X’B.
- But u(X) could be nonlinear, what then?

- Linear projection justification: best linear approximation to u(X):

B=argminkE [(,u(X) — X’p)2]

beRK

« Linear projection is best linear approximation to Y and E[Y | X].
« Limitations:

« If nonlinearity of u(X) is severe, m(X) can only be so good.
+ m(X) can be sensitive to the marginal distribution of X.
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Recap

Y=XB+e

+ “The Linear Model”: is this an assumption?

- Depends on what we assume about the error, e

« If E[e | X] = 0, then we are assuming the CEF is linear, E[Y | X] = X'
- If just E[Xe] = 0, then this is just a linear projection.
« First is very strong, second is very mild.

« Why do we care? Affects the properties of OLS.

- Some finite-sample properties of OLS (unbiasedness) require linear CEF
+ Asymptotic results (consistency, asymptotic normality) apply to both.
+ OLS will consitently estimate something, but maybe not what you want.

29/29



