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Where are we? Where are we going?

+ We saw how the population linear projection works.
+ How can we estimate the parameters of the linear projection or CEF?
+ Now: least squares estimator and its algebraic properties.

« After that: the statistical properties of least squares.
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Acemoglu, Johnson, and Robinson (2001)
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1/ Deriving the OLS
estimator



Samples vs population

Assumption
The variables {(Y;,X;), ..., (Y, X,), ..., (Y,,X,)} are i.i.d. draws from a
common distribution F.
+ F is the population distribution or DGP.
- Without / subscripts, (Y, X) are r.v.s and draws from F.
« {(Y;,X;):i=1,...,n} is the sample and can be seen in two ways:

+ Numbers in your data matrix, fixed to the analyst.
- From a statistical POV, they are realizations of a random process.

+ Violations include time-series data and clustered sampling.

+ Weakening i.i.d. usually complicates notation but can be done.
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Quantity of interest

+ Population linear projection model:

Y=XB+e
+ Here B minimizes the population expected squared error:

B=argminS(b),  S(b)=E[(Y —X'b)’|

beRK

+ Last time we saw that this can be written:

B = (EIXX']) ™ E[XY]
+ How do we estimate B?
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Which line is better?

Log GDP per capita

Average Protection Against Expropriation Risk
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Plug-in principle returns!

+ Plug-in estimator: solve the sample version of the population goal.
+ Replace projection errors with observed errors, or residuals: Y, — X/b

- Sum of squared residuals, SSR(b) = E;’ZI(Y, — X/b)2.
- Total prediction error using b as our estimated coefficient.

+ We can use these residuals to get a sample average prediction error:
n

S(b) = 12(»/ X/b)> = —SSR( )

i=1

+ S(b) is an estimator of the expected squared error, S(b).
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Least squares estimator

- Ordinary least squares estimator minimizes S in place of S.

B =argminkE [(Y — X’b)2]
beRk

B = argmin 1 > (Y- X/b)°
i=1

beRk N

+ In words: find the coefficients that minimize the sum/average of the
squared residuals.

+ After some calculus, we can write this as a plug-in estimator:

ﬁ: (iixixf) (:’zn:xlyl>

-+ n Y7 XX/ is the sample version of E[XX']
-« n 1327 XY is the sample version of E[XY]
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Bivariate regressions

- Bivariate regression is the linear projection model with X = (1, X):

Y =B+ XB +e

+ Linear projection slope in the population from last times:
B, — Cov(X,Y)
VX

+ We can show the OLS estimator of the slope is:

s T (Y =X =X) _ Cov(X,Y)
70— X7 o,

9/43



Visualizing OLS

Log GDP per capita

Average Protection Against Expropriation Risk

Average of Squared Residuals
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- Fitted value Y, = X/ is what the model predicts at X;

- Not really a prediction for Y; since that was used to generate g

- Residuals are the difference between observed and fitted values:

- We can write Y, = X/ + &..
+ & are not the true errors ¢;

+ Key mechanical properties of OLS residuals:
> X&=0
i=1

- Sample covariance between X; and ¢ is 0.
- If X; has a constant, then n* 3" & =0
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2] Model fit



+ How do we judge how well a regression fits the data?
+ How much does X; help us predict Y;?
« Prediction errors without X :

- Best prediction is the mean, Y

« Prediction error is called the total sum of squares (TSS) would be:

TSS=S (V- V)

n

i=1

+ Prediction errors with X :

- Best predictions are the fitted values, Y.
+ Prediction error is the sum of the squared residuals or SSR:
n

SSR= (Y= V2

i=1
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Total SS vs SSR
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Total SS vs SSR
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+ Regression will always improve in-sample fit: TSS > SSR

+ How much better does using X; do? Coefficient of determination or R%:

_TSS—SSR _ . _SSR
- T7ss T Tss

RZ
* R? = fraction of the total prediction error eliminated by using X..

- Common interpretation: R? is the fraction of the variation in Y; is
“explained by” X,.

+ R? =0 means no relationship
« R? = 1implies perfect linear fit

+ Mechanically increases with additional covariates (better fit measures
exist)
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3/ Geometry of OLS



Linear model in matrix form

« Linear model is a system of n linear equations:

Yi=XB+e
Y, =XB+e
Yn = X;p + en

+ We can write this more compactly using matrices and vectors:

Yi X] I Xy X o Xk Sl
Y — Y, v — X5 _ I Xy X 0 Xy e — €
Yn X; 1 an Xn2 Xnk €,

+ Model is now just:
Y=XB+e
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OLS estimator in matrix form

+ Key relationship: sample sums can be written in matrix notation:

i X, X] = X'%
i=1
zn: XY, =X'Y
i=1

- Implies we can write the OLS estimator as

B=xx'wyY
+ Residuals:

Y1 1Bo + XuPy + Xiof + - + Xy
Yo | | 1By + XaPr + XooBo + - + Xy

Va 1/§o + anBl + Xn2B2 +oet Xnkﬁk
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Geometric view of OLS

+ Recall the length of a vector: ||a] = \/a} + - + a2

- Distance between two vectors: |a—b| = \/(a; — b;)2 + - + (a, — b,)?

+ We can rewrite the OLS estimator as:

ﬁ_argmln Y — Xb||2_argm|nz (Y, — X/b)?
beRk+1 beRKL 4
+ Let @(X) = {Xb : b € R?} be the column space of X

+ All n-vectors formed as a linear combination of the columns of X.
+ k + 1-dimensional subspace of R”
+ This is the space that OLS is searching over!

« Geometrically OLS is:

+ Find coefficients that minimize distance between the Y and Xb.
+ Find the point in €(X) that is closest to Y
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+ Finding closest pointin C(X) to Y is
called projection
« Example: n =3 and k = 2: points in
3D space.
+ Column space of X is a plane in
this space.
- Residual vector é =Y — %8 is
orthogonal to C(X)
- Shortest distance from Y to C(X)
is a straight line to the plane,
which will be perpendicular to
C(X).
+ Implies that X’e =0
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Multicollinearity

- Hidden assumption: XX = Y7 | XX/ is invertible.

- Equivalent to X being full column rank.
+ Equivalent to columns of X being linearly independent

+ Full column rank if Xb = 0 if and only if b = 0.

by + by + o+ b1 Ky =0 = by

=by=-=b,, =0,

+ Typically reasonable but can be violated by user error:

+ Accidentally adding the same variable twice.
+ Including all dummies for a categorical variable.

+ Including fixed effects for group and variables that do not vary within
groups.
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Projection/hat matrix

+ We can define the transformation of Y that does the projection.
B = K(X'X)"LR'Y
+ Projection matrix
P = X(X' X)W
+ Also called the hat matrix it puts the “hat” on Y:
PY = X(X'X)" XY =%B=Y

+ Key properties:

+ Pisan n x nsymmetric matrix
+ P is idempotent: PP = P
- Projecting X onto itself returns itself: PX = X
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Annihilator matrix

- Annihilator matrix projects onto the space spanned by the residual:

M=1,—P=1,—X(X'%)"%

. Also called the residual maker:

MY=(,—P)Y=Y—PY=Y_Y=e

- “Annihilates” any function in the column space of %, C(X):

MX=(,—P)X=X—PAX=X—%X=0

 Properties:

+ M is a symmetric n x n matrix.
+ M is idempotent so that MM = M
+ Admits a nice expression for the residual vector: € = Me
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Partitioned regression

« Partition covariates and coefficients X = [X; X,] and B = (B;,B,)":

Y =X%B; + KBy + €

+ Can we find expressions for ﬁl and ﬁz?

+ Residual regression or Frisch-Waugh-Lovell theorem to obtain ﬁl:

- Use OLS to regress Y on X, and obtain residuals &,.
- Use OLS to regress each column of %, on %, and obtain residuals %;.
- Use OLS to regress &, on %,
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Focus on simple case

+ Focus on single covariate model with no intercept: Y; = X;8 + ¢;
« Let X = (X, ..., X,) and recall inner product: (X,Y) = 27:1 XY,
+ Inner products measure how similar two vectors are.

+ Slope in this case:
ﬁ‘: Z,'leiyf _ <X7Y>
ST X (XX)

+ Suppose we add an orthogonal covariate Y = X + Zy + e with
(X,Z) = 0.

~

A_(X,Y A_<Z,Y>
P=xx 7~ zz

+ With exactly orthogonal covariates, multivariate OLS is the same as
univariate OLS.
+ Only holds in balanced, designed experiments.
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Adding the intercept

+ Consider the OLS slope with an intercept:

s X (XK =X)(Y,—Y)  (X-XLY-Y1)  (X—X1)Y)
= ST =X) (X=XL,X-X1) (X—XL,X-X1)

+ How can we get this?

1. Regress X on 1 to get coefficient X
2. Regress Y on residuals from step 1, X — X1

- If wanted to get coefficient on added variable Z;, we could repeat this:

1. Regress Z on X = X — X1 on and obtain coefficient (Z, i)/(i,i)
2. Regress Y on residual from
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Visualizing orthogonalization

X1

FIGURE 3.4. Least squares regression by orthogonalization of the inputs. The
vector Xz 1is regressed on the vector x1, leaving the residual vector z. The regres-
sion of y on z gives the multiple regression coefficient of x2. Adding together the
projections of y on each of x1 and z gives the least squares fit y.
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Why does residual regression work?

- We can find B, by nested minimization:

By = argmin (minlY 8, — X,6.1 )
2

1

- First find the minimum of the SSR over B, fixing B,
+ Then find B, that minimizes the resulting SSR.

+ The projection and annihilator matrices are defined only by covariates.

© My =1, = K (R%) 1R
- Creates residuals from a regression on or X%,

+ Solving the nested minimization gives:
= =il
B = (X£M2X1) (X1M2Y)

- When will B, will be the same regardless of whether ¥, is included?

+ If X, and X%, are orthogonal so X5%; = 050 M,%X; = %X,
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Residual regression

+ Define two sets of residuals:

- %, = M, X, = residuals from regression of %, on %,
- & = M,Y = residuals from regression of Y on X%;.

- Then remembering that M, is symmetric and idempotent:

n 7/ _1 7/
/52 = (X2M1X2) (XleY)
= (KM M%) (X5MM,Y)

= (%%,) " (%8)

- B, can be obtained from a regression of &, on %,.

-+ Same result applies when using Y in place of &;.

+ Intuition: residuals are orthogonal

- Called the Frisch-Waugh-Lovell Theorem

+ Sample version of the results we saw for the linear projection.
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4] Influential observations



Outliers, leverage points, and influential

observations

- Least square heavily penalizes large residuals.

- Implies a just a few unusual observations can be extremely influential.

- Dropping them leads to large changes in the estimated .
+ Not all “unusual” observations have the same effect, though.

+ Useful to categorize:

1. Leverage point: extreme in one X direction
2. Outlier: extreme in the Y direction
3. Influence point: extreme in both directions
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Example: Buchanan votes in Florida, 2000

2000 Presidential election in FL (Wand et al., 2001, APSR)

OFFICIAL BALLOT, GENERAL ELECTION
PALM BEACH COUNTY, FLORIDA
NOVEMBER 7, 2000

(REPUBLICAN)
GEORGE W. BUSH -presioent
DICK CHENEY - vice PResIDENT

DFFICIM. BALLOT, GENERAL ELECTION
PALM BEACH COUNTY, FLORIDA

NOVEMBER 7, 2000

(DEMOCRATIC)
AL GORE - presiDent
JOE LIEBERMAN - vice PResIDENT

(REFORM)
PAT BUCHANAN - pResiDENT
EZOLA FOSTER - vice PRESIDENT

(SOCIALIST)
DAVID McREYNOLDS - pResinent
MARY CAL HOLLIS - vice PResiDenT

(LIBERTARIAN)
HARRY BROWNE - pResinent
T ART OLIVIER - vice PRESIDENT
es will (GREEN)

slectors.) | RALPH NADER -prestoent
WINONA LaDUKE - vice PRESIDENT

(CONSTITUTION)
HOWARD PHILLIPS - presioent
J. CURTIS FRAZIER - vice PRESIDENT

(SOCIALIST WORKERS)
JAMES HARRIS - pReSIDENT
MARGARET TROWE - vice PRESIDENT

(WORKERS WORLD)
MONICA MOOREHEAD - presioent
GLORIA La RIVA - vice PResiDenT

(NATURAL LAW)
JOHN HAGELIN - presioent
NAT GOLDHABER - vice PRESIDENT

WRITE-IN CANDIDATE
To vote for a write-in candidate, follow the
directions on the long stub of your ballot card.
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Example: Buchanan votes in Florida, 2000

3500
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Total Votes

31/43



Example: Buchanan votes in Florida, 2000

3500 + Palm Beach e

3000 ~
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2000 ~
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Example: Buchanan votes

mod <- 1m(edaybuchanan ~ edaytotal, data = flvote)
summary(mod)

##

## Coefficients:

#t Estimate Std. Error t value Pr(>|t])

## (Intercept) 54.22945  49.14146 1.10 0.27

## edaytotal 0.00232 0.00031 7.48 2.4e-10 **x*
## ---

## Signif. codes:

## 0 "*xx' 0.001 '**' 0.01 '+' .05 '.' 0.1 " ' 1

##

## Residual standard error: 333 on 65 degrees of freedom
## Multiple R-squared: ©0.463, Adjusted R-squared: 0.455
## F-statistic: 56 on 1 and 65 DF, p-value: 2.42e-10
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Leverage point definition

0
° .
14 ., .o (P9 Leverage Point
° ® o0 Full sample
‘ 0°g ©
° n °
0 A . (XA Without leverage point
o0 '. e® ©
1 s ©
oy e o° °
° °
-2 4 o. o' ®
-3 4 °
r T T T T T 1
-4 =2 0 2 4 6 8

+ Values that are extreme in the X dimension

» That is, values far from the center of the covariate distribution
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Leverage values

- Let h; be the (i, j) entry of P. Then:

Y = PY — ?:Zh..y.

* h; = importance of observation j is for the fitted value Y,
- Leverage/hat values: h; diagonal entries of the hat matrix

+ With a simple linear regression, we have

L _X)2
pol, (X=X

ii n ZJ’;I( ¢ _Y)2

+ ~= how far i is from the center of the X distribution
* Rule of thumb: examine hat values greater than 2(k +1)/n
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Buchanan hats

head(hatvalues(mod), 5)

#it 1 2 3 4 5
## 0.0418 0.0228 0.2207 0.0156 0.0149
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Outlier definition

Outlier@

Full sample

+ An outlier is far away from the center of the Y distribution.

« Intuitively: a point that would be poorly predicted by the regression.
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Detecting outliers

+ Want values poorly predicted? Look for big residuals, right?

- Problem: we use i to estimate B so Y aren’t valid predctions.
+ unit might pull the regression line toward itself ~» small residual

- Better: leave-one-out prediction errors,

1. Regress Y, on X, where these omit unit i:

~ , -1
By = (Xy%cn) RenYe
2. Calculate predicted value of Y; using that regression: 7, = X,fﬁ(_,-)

3. Calculate prediction error: & = Y; — 37,

+ Simple closed-form expressions:

By=B-(X®)'X& &=

1
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Influence points

e
Influence Point

Without influence point

+ An influence point is one that is both an outlier and a leverage point.

+ Extreme in both the X and Y dimensions
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Overall measures of influence

+ Influence of i can be measured by change in predictions:

Y, — Vl = h&
+ How much does excluding i from the regression change its predicted
value?
+ Equal to “leverage x outlier-ness”
« Lots of diagnostics exist, but are mostly heuristic.
- Does removing the point change a coefficient by a lot?
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Limitations of the standard tools

« What happens when there are two influence points?
+ Red line drops the red influence point

- Blue line drops the blue influence point
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What to do about outliers and influential units?

- Is the data corrupted?

+ Fix the observation (obvious data entry errors)
+ Remove the observation
+ Be transparent either way

+ Is the outlier part of the data generating process?

+ Transform the dependent variable (log(y))
+ Use a method that is robust to outliers (robust regression, least
absolute deviations)
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