13. Properties of Least Squares

Spring 2023
Matthew Blackwell
Gov 2002 (Harvard)

Where are we? Where are we going?

- Before: learned about CEFs and linear projections in the population.

Where are we? Where are we going?

- Before: learned about CEFs and linear projections in the population.
- Last time: OLS estimator, its algebraic properties.

Where are we? Where are we going?

- Before: learned about CEFs and linear projections in the population.
- Last time: OLS estimator, its algebraic properties.
- Now: its statistical properties, both finite-sample and asymptotic.

Acemoglu, Johnson, and Robinson (2001)

Political Institutions and Economic Development

Sampling distribution of the OLS estimator

- OLS is an estimator-we plug data into and we get out estimates.

Sampling distribution of the OLS estimator

- OLS is an estimator-we plug data into and we get out estimates.

Sampling distribution of the OLS estimator

- OLS is an estimator-we plug data into and we get out estimates.

Sample 1: $\left\{\left(Y_{1}, X_{1}\right), \ldots,\left(Y_{n}, X_{n}\right)\right\} \rightarrow\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)_{1}$

Sampling distribution of the OLS estimator

- OLS is an estimator-we plug data into and we get out estimates.

Sample 1: $\left\{\left(Y_{1}, X_{1}\right), \ldots,\left(Y_{n}, X_{n}\right)\right\} \rightarrow\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)_{1}$
Sample 2: $\left\{\left(Y_{1}, X_{1}\right), \ldots,\left(Y_{n}, X_{n}\right)\right\} \rightarrow\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)_{2}$

Sampling distribution of the OLS estimator

- OLS is an estimator-we plug data into and we get out estimates.

Sampling distribution of the OLS estimator

- OLS is an estimator-we plug data into and we get out estimates.

Sample 1: $\left\{\left(Y_{1}, X_{1}\right), \ldots,\left(Y_{n}, X_{n}\right)\right\}$
Sample 2: $\left\{\left(Y_{1}, X_{1}\right), \ldots,\left(Y_{n}, X_{n}\right)\right\}$

- Just like the sample mean or sample difference in means

Sampling distribution of the OLS estimator

- OLS is an estimator-we plug data into and we get out estimates.

Sample 1: $\left\{\left(Y_{1}, X_{1}\right), \ldots,\left(Y_{n}, X_{n}\right)\right\}$
Sample 2: $\left\{\left(Y_{1}, X_{1}\right), \ldots,\left(Y_{n}, X_{n}\right)\right\}$

- Just like the sample mean or sample difference in means
- Has a sampling distribution, with a sampling variance/standard error.

Simulation procedure

- Let's take a simulation approach to demonstrate:

Simulation procedure

- Let's take a simulation approach to demonstrate:
- Pretend that the AJR data represents the population of interest

Simulation procedure

- Let's take a simulation approach to demonstrate:
- Pretend that the AJR data represents the population of interest
- See how the line varies from sample to sample

Simulation procedure

- Let's take a simulation approach to demonstrate:
- Pretend that the AJR data represents the population of interest
- See how the line varies from sample to sample

1. Draw a random sample of size $n=30$ with replacement using sample()

Simulation procedure

- Let's take a simulation approach to demonstrate:
- Pretend that the AJR data represents the population of interest
- See how the line varies from sample to sample

1. Draw a random sample of size $n=30$ with replacement using sample()
2. Use $\operatorname{lm}()$ to calculate the OLS estimates of the slope and intercept

Simulation procedure

- Let's take a simulation approach to demonstrate:
- Pretend that the AJR data represents the population of interest
- See how the line varies from sample to sample

1. Draw a random sample of size $n=30$ with replacement using sample()
2. Use $\operatorname{lm}()$ to calculate the OLS estimates of the slope and intercept
3. Plot the estimated regression line

Population Regression

Randomly sample from AJR

- We want finite-sample guarantees about our estimates.
- We want finite-sample guarantees about our estimates.
- Unbiasedness, exact sampling distribution, etc.
- We want finite-sample guarantees about our estimates.
- Unbiasedness, exact sampling distribution, etc.
- But finite-sample results come at a price in terms of assumptions.
- We want finite-sample guarantees about our estimates.
- Unbiasedness, exact sampling distribution, etc.
- But finite-sample results come at a price in terms of assumptions.
- Unbiasedness: CEF is linear.
- We want finite-sample guarantees about our estimates.
- Unbiasedness, exact sampling distribution, etc.
- But finite-sample results come at a price in terms of assumptions.
- Unbiasedness: CEF is linear.
- Exact sampling distribution: normal errors.

Big picture

- We want finite-sample guarantees about our estimates.
- Unbiasedness, exact sampling distribution, etc.
- But finite-sample results come at a price in terms of assumptions.
- Unbiasedness: CEF is linear.
- Exact sampling distribution: normal errors.
- Asymptotic results hold under much weaker assumptions, but require more data.

Big picture

- We want finite-sample guarantees about our estimates.
- Unbiasedness, exact sampling distribution, etc.
- But finite-sample results come at a price in terms of assumptions.
- Unbiasedness: CEF is linear.
- Exact sampling distribution: normal errors.
- Asymptotic results hold under much weaker assumptions, but require more data.
- OLS consistent for the linear projection even with nonlinear CEF.

Big picture

- We want finite-sample guarantees about our estimates.
- Unbiasedness, exact sampling distribution, etc.
- But finite-sample results come at a price in terms of assumptions.
- Unbiasedness: CEF is linear.
- Exact sampling distribution: normal errors.
- Asymptotic results hold under much weaker assumptions, but require more data.
- OLS consistent for the linear projection even with nonlinear CEF.
- Asymptotic normality for sampling distribution under mild assumptions.

Big picture

- We want finite-sample guarantees about our estimates.
- Unbiasedness, exact sampling distribution, etc.
- But finite-sample results come at a price in terms of assumptions.
- Unbiasedness: CEF is linear.
- Exact sampling distribution: normal errors.
- Asymptotic results hold under much weaker assumptions, but require more data.
- OLS consistent for the linear projection even with nonlinear CEF.
- Asymptotic normality for sampling distribution under mild assumptions.
- Focus on two models:

Big picture

- We want finite-sample guarantees about our estimates.
- Unbiasedness, exact sampling distribution, etc.
- But finite-sample results come at a price in terms of assumptions.
- Unbiasedness: CEF is linear.
- Exact sampling distribution: normal errors.
- Asymptotic results hold under much weaker assumptions, but require more data.
- OLS consistent for the linear projection even with nonlinear CEF.
- Asymptotic normality for sampling distribution under mild assumptions.
- Focus on two models:
- Linear projection model for asymptotic results.

Big picture

- We want finite-sample guarantees about our estimates.
- Unbiasedness, exact sampling distribution, etc.
- But finite-sample results come at a price in terms of assumptions.
- Unbiasedness: CEF is linear.
- Exact sampling distribution: normal errors.
- Asymptotic results hold under much weaker assumptions, but require more data.
- OLS consistent for the linear projection even with nonlinear CEF.
- Asymptotic normality for sampling distribution under mild assumptions.
- Focus on two models:
- Linear projection model for asymptotic results.
- Linear regression/CEF model for finite samples.

1/ Linear projection model and Large-sample
Properties

Linear projection model

- We'll start at the most broad, fewest assumptions

Linear projection model

- We'll start at the most broad, fewest assumptions

Linear projection model

1. For the variables (Y, \mathbf{X}), we assume the linear projection of Y on \mathbf{X} is defined as:

$$
\begin{aligned}
Y & =\mathbf{X}^{\prime} \boldsymbol{\beta}+e \\
\mathbb{E}[\mathbf{X} e] & =0 .
\end{aligned}
$$

Linear projection model

- We'll start at the most broad, fewest assumptions

Linear projection model

1. For the variables (Y, \mathbf{X}), we assume the linear projection of Y on \mathbf{X} is defined as:

$$
\begin{aligned}
Y & =\mathbf{X}^{\prime} \boldsymbol{\beta}+e \\
\mathbb{E}[\mathbf{X} e] & =0 .
\end{aligned}
$$

2. The design matrix is invertible, so $\mathbb{E}\left[\mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right]>0$ (positive definite).

Linear projection model

- We'll start at the most broad, fewest assumptions

Linear projection model

1. For the variables (Y, \mathbf{X}), we assume the linear projection of Y on \mathbf{X} is defined as:

$$
\begin{aligned}
Y & =\mathbf{X}^{\prime} \boldsymbol{\beta}+e \\
\mathbb{E}[\mathbf{X} e] & =0 .
\end{aligned}
$$

2. The design matrix is invertible, so $\mathbb{E}\left[\mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right]>0$ (positive definite).

- Linear projection model holds under very mild assumptions.

Linear projection model

- We'll start at the most broad, fewest assumptions

Linear projection model

1. For the variables (Y, \mathbf{X}), we assume the linear projection of Y on \mathbf{X} is defined as:

$$
\begin{aligned}
Y & =\mathbf{X}^{\prime} \boldsymbol{\beta}+e \\
\mathbb{E}[\mathbf{X} e] & =0 .
\end{aligned}
$$

2. The design matrix is invertible, so $\mathbb{E}\left[\mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right]>0$ (positive definite).

- Linear projection model holds under very mild assumptions.
- Remember: not even assuming linear CEF!

Linear projection model

- We'll start at the most broad, fewest assumptions

Linear projection model

1. For the variables (Y, \mathbf{X}), we assume the linear projection of Y on \mathbf{X} is defined as:

$$
\begin{aligned}
Y & =\mathbf{X}^{\prime} \boldsymbol{\beta}+e \\
\mathbb{E}[\mathbf{X} e] & =0 .
\end{aligned}
$$

2. The design matrix is invertible, so $\mathbb{E}\left[\mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right]>0$ (positive definite).

- Linear projection model holds under very mild assumptions.
- Remember: not even assuming linear CEF!
- Implies coefficients are $\boldsymbol{\beta}=\left(\mathbb{E}\left[\mathbf{X} \mathbf{X}^{\prime}\right]\right)^{-1} \mathbb{E}[\mathbf{X} Y]$

Linear projection model

- We'll start at the most broad, fewest assumptions

Linear projection model

1. For the variables (Y, \mathbf{X}), we assume the linear projection of Y on \mathbf{X} is defined as:

$$
\begin{aligned}
Y & =\mathbf{X}^{\prime} \boldsymbol{\beta}+e \\
\mathbb{E}[\mathbf{X} e] & =0 .
\end{aligned}
$$

2. The design matrix is invertible, so $\mathbb{E}\left[\mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right]>0$ (positive definite).

- Linear projection model holds under very mild assumptions.
- Remember: not even assuming linear CEF!
- Implies coefficients are $\beta=\left(\mathbb{E}\left[\mathbf{X} \mathbf{X}^{\prime}\right]\right)^{-1} \mathbb{E}[\mathbf{X} Y]$
-What properties can we derive under such weak assumptions?

A very useful decomposition

$$
\hat{\beta}=\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{\mathbf{i}} \mathbf{x}_{i}\right)^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} y_{i}\right)=\beta+\underbrace{\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{\mathbf{i}} \mathbf{x}_{i}\right)^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} e_{i}\right)}_{\text {estimation eror }}
$$

- OLS estimates are the truth plus some estimation error.

A very useful decomposition

$$
\hat{\beta}=\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{\mathbf{x}} \mathbf{x}_{i}\right)^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{y_{i}} y_{i}\right)=\beta+\underbrace{\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}\right)^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} e_{i}\right)}_{\text {estimation eror }}
$$

- OLS estimates are the truth plus some estimation error.
- Most of what we derive about OLS comes from this view.

A very useful decomposition

$$
\hat{\boldsymbol{\beta}}=\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right)^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} Y_{i}\right)=\boldsymbol{\beta}+\underbrace{\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right)^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} e_{i}\right)}_{\text {estimation error }}
$$

- OLS estimates are the truth plus some estimation error.
- Most of what we derive about OLS comes from this view.
- Sample means in the estimation error follow the law of large numbers:

$$
\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime} \xrightarrow{p} \mathbb{E}\left[\mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right] \equiv \mathbf{Q}_{\mathbf{X X}} \quad \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} e_{i} \xrightarrow{p} \mathbb{E}[\mathbf{X} e]=\mathbf{0}
$$

A very useful decomposition

$$
\hat{\beta}=\left(\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}\right)^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{1} y_{i}\right)=\beta+\underbrace{\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} x_{i}\right)^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} e_{i}\right)}_{\text {estimation eror }}
$$

- OLS estimates are the truth plus some estimation error.
- Most of what we derive about OLS comes from this view.
- Sample means in the estimation error follow the law of large numbers:

$$
\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime} \xrightarrow{p} \mathbb{E}\left[\mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right] \equiv \mathbf{Q}_{\mathbf{X X}} \quad \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} e_{i} \xrightarrow{p} \mathbb{E}[\mathbf{X} e]=\mathbf{0}
$$

- \mathbf{Q}_{Xx} is invertible by assumption, so by the continuous mapping theorem:

$$
\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right)^{-1} \xrightarrow{p} \mathbf{Q}_{\mathbf{x}}^{\mathbf{x}} \quad \Longrightarrow \quad \hat{\boldsymbol{\beta}} \xrightarrow{p} \boldsymbol{\beta}+\mathbf{Q}_{\mathbf{x} \mathbf{x}}^{-1} \cdot \mathbf{0}=\boldsymbol{\beta},
$$

Consistency of OLS

Theorem (Consistency of OLS)
Under the linear projection model and i.i.d. data, $\hat{\beta}$ is consistent for $\boldsymbol{\beta}$.

- Simple proof, but powerful result.

Consistency of OLS

Theorem (Consistency of OLS)

Under the linear projection model and i.i.d. data, $\hat{\boldsymbol{\beta}}$ is consistent for $\boldsymbol{\beta}$.

- Simple proof, but powerful result.
- OLS consistently estimates the linear projection coefficients, β.

Consistency of OLS

Theorem (Consistency of OLS)

Under the linear projection model and i.i.d. data, $\hat{\beta}$ is consistent for $\boldsymbol{\beta}$.

- Simple proof, but powerful result.
- OLS consistently estimates the linear projection coefficients, β.
- No guarantees about what the β_{j} represent!

Consistency of OLS

Theorem (Consistency of OLS)

Under the linear projection model and i.i.d. data, $\hat{\boldsymbol{\beta}}$ is consistent for $\boldsymbol{\beta}$.

- Simple proof, but powerful result.
- OLS consistently estimates the linear projection coefficients, β.
- No guarantees about what the β_{j} represent!
- Best linear approximation to $\mathbb{E}[Y \mid \mathbf{X}]$.

Consistency of OLS

Theorem (Consistency of OLS)

Under the linear projection model and i.i.d. data, $\hat{\boldsymbol{\beta}}$ is consistent for $\boldsymbol{\beta}$.

- Simple proof, but powerful result.
- OLS consistently estimates the linear projection coefficients, β.
- No guarantees about what the β_{j} represent!
- Best linear approximation to $\mathbb{E}[Y \mid \mathbf{X}]$.
- If we have a linear CEF, then it's consistent for the CEF coefficients.

Consistency of OLS

Theorem (Consistency of OLS)

Under the linear projection model and i.i.d. data, $\hat{\boldsymbol{\beta}}$ is consistent for $\boldsymbol{\beta}$.

- Simple proof, but powerful result.
- OLS consistently estimates the linear projection coefficients, $\boldsymbol{\beta}$.
- No guarantees about what the β_{j} represent!
- Best linear approximation to $\mathbb{E}[Y \mid \mathbf{X}]$.
- If we have a linear CEF, then it's consistent for the CEF coefficients.
- Valid with no restrictions on Y : could be binary, discrete, etc.

Consistency of OLS

Theorem (Consistency of OLS)

Under the linear projection model and i.i.d. data, $\hat{\boldsymbol{\beta}}$ is consistent for $\boldsymbol{\beta}$.

- Simple proof, but powerful result.
- OLS consistently estimates the linear projection coefficients, $\boldsymbol{\beta}$.
- No guarantees about what the β_{j} represent!
- Best linear approximation to $\mathbb{E}[Y \mid \mathbf{X}]$.
- If we have a linear CEF, then it's consistent for the CEF coefficients.
- Valid with no restrictions on Y : could be binary, discrete, etc.
- Not guaranteed to be unbiased (unless CEF is linear, as we'll see...)

Central limit theorem, reminders

- We'll want to approximate the sampling distribution of $\hat{\boldsymbol{\beta}}$. CLT!

Central limit theorem, reminders

- We'll want to approximate the sampling distribution of $\hat{\beta}$. CLT!
- Consider some sample mean of i.i.d. data: $n^{-1} \sum_{i=1}^{n} g\left(\mathbf{X}_{i}\right)$. We have:

$$
\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} g\left(\mathbf{X}_{i}\right)\right]=\mathbb{E}\left[g\left(\mathbf{X}_{i}\right)\right] \quad \operatorname{var}\left[\frac{1}{n} \sum_{i=1}^{n} g\left(\mathbf{X}_{i}\right)\right]=\frac{\operatorname{var}\left[g\left(\mathbf{X}_{i}\right)\right]}{n}
$$

Central limit theorem, reminders

- We'll want to approximate the sampling distribution of $\hat{\beta}$. CLT!
- Consider some sample mean of i.i.d. data: $n^{-1} \sum_{i=1}^{n} g\left(\mathbf{X}_{i}\right)$. We have:

$$
\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} g\left(\mathbf{X}_{i}\right)\right]=\mathbb{E}\left[g\left(\mathbf{X}_{i}\right)\right] \quad \operatorname{var}\left[\frac{1}{n} \sum_{i=1}^{n} g\left(\mathbf{X}_{i}\right)\right]=\frac{\operatorname{var}\left[g\left(\mathbf{X}_{i}\right)\right]}{n}
$$

- CLT implies:

$$
\sqrt{n}\left(\frac{1}{n} \sum_{i=1}^{n} g\left(\mathbf{X}_{i}\right)-\mathbb{E}\left[g\left(\mathbf{X}_{i}\right)\right]\right) \xrightarrow{d} \mathcal{N}\left(0, \operatorname{var}\left[g\left(\mathbf{X}_{i}\right)\right]\right)
$$

Central limit theorem, reminders

- We'll want to approximate the sampling distribution of $\hat{\beta}$. CLT!
- Consider some sample mean of i.i.d. data: $n^{-1} \sum_{i=1}^{n} g\left(\mathbf{X}_{i}\right)$. We have:

$$
\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} g\left(\mathbf{X}_{i}\right)\right]=\mathbb{E}\left[g\left(\mathbf{X}_{i}\right)\right] \quad \operatorname{var}\left[\frac{1}{n} \sum_{i=1}^{n} g\left(\mathbf{X}_{i}\right)\right]=\frac{\operatorname{var}\left[g\left(\mathbf{X}_{i}\right)\right]}{n}
$$

- CLT implies:

$$
\sqrt{n}\left(\frac{1}{n} \sum_{i=1}^{n} g\left(\mathbf{X}_{i}\right)-\mathbb{E}\left[g\left(\mathbf{X}_{i}\right)\right]\right) \xrightarrow{d} \mathcal{N}\left(0, \operatorname{var}\left[g\left(\mathbf{X}_{i}\right)\right]\right)
$$

- If $\mathbb{E}\left[g\left(\mathbf{X}_{i}\right)\right]=0$, then we have

$$
\sqrt{n}\left(\frac{1}{n} \sum_{i=1}^{n} g\left(\mathbf{X}_{i}\right)\right)=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} g\left(\mathbf{X}_{i}\right) \xrightarrow{d} \mathcal{N}\left(0, \mathbb{E}\left[g\left(\mathbf{X}_{i}\right) g\left(\mathbf{X}_{i}\right)^{\prime}\right]\right)
$$

Standardized estimator

$$
\sqrt{n}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})=\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right)^{-1}\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \mathbf{X}_{i} e_{i}\right)
$$

Standardized estimator

$$
\sqrt{n}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})=\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right)^{-1}\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \mathbf{X}_{i} e_{i}\right)
$$

- Remember that $\left(n^{-1} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right)^{-1} \xrightarrow{p} \mathbf{Q}_{\mathbf{X} \mathbf{X}}^{-1}$ so we have

$$
\sqrt{n}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \approx \mathbf{Q}_{\mathbf{X} \mathbf{X}}^{-1}\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \mathbf{X}_{i} e_{i}\right)
$$

Standardized estimator

$$
\sqrt{n}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})=\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right)^{-1}\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \mathbf{X}_{i} e_{i}\right)
$$

- Remember that $\left(n^{-1} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right)^{-1} \xrightarrow{p} \mathbf{Q}_{\mathbf{X} \mathbf{X}}^{-1}$ so we have

$$
\sqrt{n}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \approx \mathbf{Q}_{\mathbf{x} \mathbf{x}}^{-1}\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \mathbf{X}_{i} e_{i}\right)
$$

- What about $n^{-1 / 2} \sum_{i=1}^{n} \mathbf{X}_{i} e_{i}$? Notice that:

Standardized estimator

$$
\sqrt{n}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})=\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right)^{-1}\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \mathbf{X}_{i} e_{i}\right)
$$

- Remember that $\left(n^{-1} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right)^{-1} \xrightarrow{p} \mathbf{Q}_{\mathbf{X} \mathbf{X}}^{-1}$ so we have

$$
\sqrt{n}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \approx \mathbf{Q}_{\mathbf{x} \mathbf{x}}^{-1}\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \mathbf{X}_{i} e_{i}\right)
$$

- What about $n^{-1 / 2} \sum_{i=1}^{n} \mathbf{X}_{i} e_{i}$? Notice that:
- $n^{-1} \sum_{i=1}^{n} \mathbf{X}_{i} e_{i}$ is a sample average with $\mathbb{E}\left[\mathbf{X}_{i} e_{i}\right]=0$.

Standardized estimator

$$
\sqrt{n}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})=\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right)^{-1}\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \mathbf{X}_{i} e_{i}\right)
$$

- Remember that $\left(n^{-1} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right)^{-1} \xrightarrow{p} \mathbf{Q}_{\mathbf{X}}^{-1}$ so we have

$$
\sqrt{n}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \approx \mathbf{Q}_{\mathbf{x} \mathbf{x}}^{-1}\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \mathbf{X}_{i} e_{i}\right)
$$

- What about $n^{-1 / 2} \sum_{i=1}^{n} \mathbf{X}_{i} e_{i}$? Notice that:
- $n^{-1} \sum_{i=1}^{n} \mathbf{X}_{i} e_{i}$ is a sample average with $\mathbb{E}\left[\mathbf{X}_{i} e_{i}\right]=0$.
- Rewrite as \sqrt{n} times an average of i.i.d. mean-zero random vectors.

Standardized estimator

$$
\sqrt{n}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})=\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right)^{-1}\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \mathbf{X}_{i} e_{i}\right)
$$

- Remember that $\left(n^{-1} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right)^{-1} \xrightarrow{p} \mathbf{Q}_{\mathbf{X} \mathbf{X}}^{-1}$ so we have

$$
\sqrt{n}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \approx \mathbf{Q}_{\mathbf{x} \mathbf{x}}^{-1}\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \mathbf{X}_{i} e_{i}\right)
$$

- What about $n^{-1 / 2} \sum_{i=1}^{n} \mathbf{X}_{i} e_{i}$? Notice that:
- $n^{-1} \sum_{i=1}^{n} \mathbf{X}_{i} e_{i}$ is a sample average with $\mathbb{E}\left[\mathbf{X}_{i} e_{i}\right]=0$.
- Rewrite as \sqrt{n} times an average of i.i.d. mean-zero random vectors.
- Let $\boldsymbol{\Omega}=\mathbb{E}\left[e_{i}^{2} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right]$ and apply the CLT:

$$
\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \mathbf{X}_{i} e_{i}\right) \xrightarrow{d} \mathcal{N}(0, \boldsymbol{\Omega})
$$

Asymptotic normality

Theorem (Asymptotic Normality of OLS)
Under the linear projection model,

$$
\sqrt{n}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \xrightarrow{d} \mathcal{N}\left(0, \mathbf{V}_{\boldsymbol{\beta}}\right),
$$

where,

$$
\mathbf{V}_{\beta}=\mathbf{Q}_{\mathbf{X} \mathbf{x}}^{-1} \mathbf{\Omega} \mathbf{Q}_{\mathbf{X} \mathbf{x}}^{-1}=\left(\mathbb{E}\left[\mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right]\right)^{-1} \mathbb{E}\left[e_{i}^{2} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right]\left(\mathbb{E}\left[\mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right]\right)^{-1}
$$

- $\hat{\beta}$ is approximately normal with mean β and variance $\mathbf{Q}_{\mathbf{x}}^{-1} \boldsymbol{\Omega} \mathbf{Q}_{\mathbf{x}}^{-1} / n$

Asymptotic normality

Theorem (Asymptotic Normality of OLS)
Under the linear projection model,

$$
\sqrt{n}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \xrightarrow{d} \mathcal{N}\left(0, \mathbf{V}_{\boldsymbol{\beta}}\right),
$$

where,

$$
\mathbf{V}_{\beta}=\mathbf{Q}_{\mathbf{X} \mathbf{x}}^{-1} \mathbf{\Omega} \mathbf{Q}_{\mathbf{X} \mathbf{x}}^{-1}=\left(\mathbb{E}\left[\mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right]\right)^{-1} \mathbb{E}\left[e_{i}^{2} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right]\left(\mathbb{E}\left[\mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right]\right)^{-1}
$$

- $\hat{\beta}$ is approximately normal with mean β and variance $\mathbf{Q}_{\mathbf{x}}^{-1} \Omega \mathbf{Q}_{\mathbf{x}}^{-1} / n$
- $\mathbf{V}_{\hat{\beta}}=\mathbf{V}_{\beta} / n$ is the asymptotic covariance matrix of $\hat{\boldsymbol{\beta}}$

Asymptotic normality

Theorem (Asymptotic Normality of OLS)
Under the linear projection model,

$$
\sqrt{n}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \xrightarrow{d} \mathcal{N}\left(0, \mathbf{V}_{\boldsymbol{\beta}}\right),
$$

where,

$$
\mathbf{V}_{\beta}=\mathbf{Q}_{\mathbf{X} \mathbf{x}}^{-1} \mathbf{\Omega} \mathbf{Q}_{\mathbf{X} \mathbf{x}}^{-1}=\left(\mathbb{E}\left[\mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right]\right)^{-1} \mathbb{E}\left[e_{i}^{2} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right]\left(\mathbb{E}\left[\mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right]\right)^{-1}
$$

- $\hat{\beta}$ is approximately normal with mean β and variance $\mathbf{Q}_{\mathbf{x}}^{-1} \Omega \mathbf{Q}_{\mathbf{x}}^{-1} / n$
- $\mathbf{V}_{\hat{\beta}}=\mathbf{V}_{\beta} / n$ is the asymptotic covariance matrix of $\hat{\boldsymbol{\beta}}$
- Square root of the diagonal of $\mathbf{V}_{\hat{\beta}}=$ standard errors for $\hat{\beta}_{j}$

Asymptotic normality

Theorem (Asymptotic Normality of OLS)
Under the linear projection model,

$$
\sqrt{n}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \xrightarrow{d} \mathcal{N}\left(0, \mathbf{V}_{\boldsymbol{\beta}}\right),
$$

where,

$$
\mathbf{V}_{\beta}=\mathbf{Q}_{\mathbf{X} \mathbf{X}}^{-1} \boldsymbol{\Omega} \mathbf{Q}_{\mathbf{X} \mathbf{X}}^{-1}=\left(\mathbb{E}\left[\mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right]\right)^{-1} \mathbb{E}\left[e_{i}^{2} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right]\left(\mathbb{E}\left[\mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right]\right)^{-1}
$$

- $\hat{\boldsymbol{\beta}}$ is approximately normal with mean $\boldsymbol{\beta}$ and variance $\mathbf{Q}_{\mathbf{x}}^{-1} \boldsymbol{\Omega} \mathbf{Q}_{\mathbf{x}}^{-1} / n$
- $\mathbf{V}_{\hat{\beta}}=\mathbf{V}_{\beta} / n$ is the asymptotic covariance matrix of $\hat{\boldsymbol{\beta}}$
- Square root of the diagonal of $\mathbf{V}_{\hat{\beta}}=$ standard errors for $\hat{\beta}_{j}$
- Allows us to formulate (approximate) confidence intervals, tests.

2/ OLS variance estimation

Estimating OLS variance

$$
\sqrt{n}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \xrightarrow{d} \mathcal{N}\left(0, \mathbf{V}_{\boldsymbol{\beta}}\right), \quad \mathbf{V}_{\boldsymbol{\beta}}=\mathbf{Q}_{\mathbf{X}}^{-1} \boldsymbol{\Omega} \mathbf{Q}_{\mathbf{x}}^{-1}
$$

- Estimation of $\mathbf{V}_{\boldsymbol{\beta}}$ uses plug-in estimators.

Estimating OLS variance

$$
\sqrt{n}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \xrightarrow{d} \mathcal{N}\left(0, \mathbf{V}_{\boldsymbol{\beta}}\right), \quad \mathbf{V}_{\boldsymbol{\beta}}=\mathbf{Q}_{\mathbf{X}}^{-1} \boldsymbol{\Omega} \mathbf{Q}_{\mathbf{x}}^{-1}
$$

- Estimation of $\mathbf{V}_{\boldsymbol{\beta}}$ uses plug-in estimators.
- Replace $\mathbf{Q}_{\mathbf{X X}}=\mathbb{E}\left[\mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right]$ with $\widehat{\mathbf{Q}}_{\mathbf{X x}}=n^{-1} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}=\mathbb{X}^{\prime} \mathbf{X} / n$.

Estimating OLS variance

$$
\sqrt{n}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \xrightarrow{d} \mathcal{N}\left(0, \mathbf{V}_{\boldsymbol{\beta}}\right), \quad \mathbf{V}_{\boldsymbol{\beta}}=\mathbf{Q}_{\mathbf{X}}^{-1} \boldsymbol{\Omega}_{\mathbf{Q}}^{-\overline{\mathbf{x}}}
$$

- Estimation of $\mathbf{V}_{\boldsymbol{\beta}}$ uses plug-in estimators.
- Replace $\mathbf{Q}_{\mathbf{x x}}=\mathbb{E}\left[\mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right]$ with $\widehat{\mathbf{Q}}_{\mathbf{X x}}=n^{-1} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}=\mathbf{X}^{\prime} \mathbf{X} / n$.
- Replace $\boldsymbol{\Omega}=\mathbb{E}\left[e_{i}^{2} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right]$ with $\widehat{\boldsymbol{\Omega}}=n^{-1} \sum_{i=1}^{n} \hat{e}_{i}^{2} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}$

Estimating OLS variance

$$
\sqrt{n}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \xrightarrow{d} \mathcal{N}\left(0, \mathbf{V}_{\boldsymbol{\beta}}\right), \quad \mathbf{V}_{\boldsymbol{\beta}}=\mathbf{Q}_{\mathbf{X}}^{-1} \boldsymbol{\Omega}_{\mathbf{Q}_{\mathbf{x}}^{-1}}^{-1}
$$

- Estimation of $\mathbf{V}_{\boldsymbol{\beta}}$ uses plug-in estimators.
- Replace $\mathbf{Q}_{\mathbf{X X}}=\mathbb{E}\left[\mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right]$ with $\widehat{\mathbf{Q}}_{\mathbf{X x}}=n^{-1} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}=\mathbb{X}^{\prime} \mathbf{X} / n$.
- Replace $\boldsymbol{\Omega}=\mathbb{E}\left[e_{i}^{2} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right]$ with $\widehat{\boldsymbol{\Omega}}=n^{-1} \sum_{i=1}^{n} \hat{e}_{i}^{2} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}$
- Putting these together:

$$
\begin{aligned}
\widehat{\mathbf{V}}_{\boldsymbol{\beta}} & =\left(\frac{1}{n} \mathbb{X}^{\prime} \mathcal{X}\right)^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} \hat{e}_{i}^{2} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right)\left(\frac{1}{n} \mathbb{X}^{\prime} \mathcal{X}\right)^{-1} \\
& =\left(\mathbb{X}^{\prime} \mathcal{X}\right)^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} \hat{e}_{i}^{2} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right)\left(\mathcal{X}^{\prime} \mathbb{X}\right)^{-1}
\end{aligned}
$$

Estimating OLS variance

$$
\sqrt{n}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \xrightarrow{d} \mathcal{N}\left(0, \mathbf{V}_{\boldsymbol{\beta}}\right), \quad \mathbf{V}_{\beta}=\mathbf{Q}_{\mathbf{x}}^{-1} \boldsymbol{\Omega}_{\mathbf{Q}}^{-1}{ }^{-1}
$$

- Estimation of $\mathbf{V}_{\boldsymbol{\beta}}$ uses plug-in estimators.
- Replace $\mathbf{Q}_{\mathbf{x X}}=\mathbb{E}\left[\mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right]$ with $\widehat{\mathbf{Q}}_{\mathbf{X x}}=n^{-1} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}=\mathbb{X}^{\prime} \mathbf{X} / n$.
- Replace $\boldsymbol{\Omega}=\mathbb{E}\left[e_{i}^{2} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right]$ with $\widehat{\boldsymbol{\Omega}}=n^{-1} \sum_{i=1}^{n} \hat{e}_{i}^{2} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}$
- Putting these together:

$$
\begin{aligned}
\widehat{\mathbf{V}}_{\beta} & =\left(\frac{1}{n} \mathbb{X}^{\prime} \mathcal{X}\right)^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} \hat{e}_{i}^{2} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right)\left(\frac{1}{n} \mathbb{X}^{\prime} \mathcal{X}\right)^{-1} \\
& =\left(\mathbb{X}^{\prime} \mathcal{X}\right)^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} \hat{e}_{i}^{2} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right)\left(\mathcal{X}^{\prime} \mathbb{X}\right)^{-1}
\end{aligned}
$$

- Possible to show this is consistent: $\widehat{\mathbf{V}}_{\boldsymbol{\beta}} \xrightarrow{p} \mathbf{V}_{\beta}$.

Estimating OLS variance

$$
\sqrt{n}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \xrightarrow{d} \mathcal{N}\left(0, \mathbf{V}_{\boldsymbol{\beta}}\right), \quad \mathbf{V}_{\beta}=\mathbf{Q}_{\mathbf{x}}^{-1} \boldsymbol{\Omega}_{\mathbf{Q}}^{-1}{ }^{-1}
$$

- Estimation of $\mathbf{V}_{\boldsymbol{\beta}}$ uses plug-in estimators.
- Replace $\mathbf{Q}_{\mathbf{x X}}=\mathbb{E}\left[\mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right]$ with $\widehat{\mathbf{Q}}_{\mathbf{X x}}=n^{-1} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}=\mathbb{X}^{\prime} \mathbf{X} / n$.
- Replace $\boldsymbol{\Omega}=\mathbb{E}\left[e_{i}^{2} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right]$ with $\widehat{\boldsymbol{\Omega}}=n^{-1} \sum_{i=1}^{n} \hat{e}_{i}^{2} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}$
- Putting these together:

$$
\begin{aligned}
\widehat{\mathbf{V}}_{\boldsymbol{\beta}} & =\left(\frac{1}{n} \mathbb{X}^{\prime} \mathcal{X}\right)^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} \hat{e}_{i}^{2} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right)\left(\frac{1}{n} \mathbb{X}^{\prime} \mathcal{X}\right)^{-1} \\
& =\left(\mathbb{X}^{\prime} X\right)^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} \hat{e}_{i}^{2} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right)\left(\mathcal{X}^{\prime} \mathbb{X}\right)^{-1}
\end{aligned}
$$

- Possible to show this is consistent: $\widehat{\mathbf{V}}_{\boldsymbol{\beta}} \xrightarrow{p} \mathbf{V}_{\beta}$.
- Square root of the diagonal of $\widehat{\mathbf{V}}_{\hat{\beta}}=n^{-1} \widehat{\mathbf{V}}_{\beta}$: heteroskedasticity-consistent (HC) SEs (aka "robust SEs")

Homoskedasticity

Assumption: Homoskedasticity

The variance of the error terms is constant in $\mathbf{X}, \mathbb{E}\left[e^{2} \mid \mathbf{X}\right]=\sigma^{2}(\mathbf{X})=\sigma^{2}$.

Heteroskedastic

Homoskedastic

Consequences of homoskedasticity

- Homoskedasticity implies $\mathbb{E}\left[e_{i}^{2} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right]=\mathbb{E}\left[e_{i}^{2}\right] \mathbb{E}\left[\mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right]=\sigma^{2} \mathbf{Q}_{\mathbf{x x}}$

Consequences of homoskedasticity

- Homoskedasticity implies $\mathbb{E}\left[e_{i}^{2} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right]=\mathbb{E}\left[e_{i}^{2}\right] \mathbb{E}\left[\mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right]=\sigma^{2} \mathbf{Q}_{\mathbf{x x}}$
- Simplifies the expression for the variance of $\sqrt{n}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})$:

$$
\mathbf{V}_{\boldsymbol{\beta}}^{\mathrm{lm}}=\mathbf{Q}_{\mathbf{x} \mathbf{x}}^{-1} \mathbb{E}\left[e_{i}^{2}\right] \mathbf{Q}_{\mathbf{x} \mathbf{x}} \mathbf{Q}_{\mathbf{x} \mathbf{x}}^{-1}=\sigma^{2} \mathbf{Q}_{\mathbf{x} \mathbf{x}}^{-1}
$$

Consequences of homoskedasticity

- Homoskedasticity implies $\mathbb{E}\left[e_{i}^{2} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right]=\mathbb{E}\left[e_{i}^{2}\right] \mathbb{E}\left[\mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right]=\sigma^{2} \mathbf{Q}_{\mathbf{x x}}$
- Simplifies the expression for the variance of $\sqrt{n}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})$:

$$
\mathbf{V}_{\boldsymbol{\beta}}^{\imath m}=\mathbf{Q}_{\mathbf{X} \mathbf{x}}^{-1} \mathbb{E}\left[e_{i}^{2}\right] \mathbf{Q}_{\mathbf{X X} \mathbf{X}} \mathbf{Q}_{\mathbf{X} \mathbf{x}}^{-1}=\sigma^{2} \mathbf{Q}_{\mathbf{X} \mathbf{X}}^{1}
$$

- Estimated variance of $\hat{\beta}$ under homoskedasticity

$$
s^{2}=\frac{1}{n-k} \sum_{i=1}^{n} \hat{e}_{i}^{2} \quad \widehat{\mathbf{V}}_{\hat{\beta}}^{l m}=\frac{1}{n} s^{2}\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right)^{-1}=s^{2}\left(\mathcal{K}^{\prime} \mathbb{X}\right)^{-1}
$$

Consequences of homoskedasticity

- Homoskedasticity implies $\mathbb{E}\left[e_{i}^{2} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right]=\mathbb{E}\left[e_{i}^{2}\right] \mathbb{E}\left[\mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right]=\sigma^{2} \mathbf{Q}_{\mathbf{x x}}$
- Simplifies the expression for the variance of $\sqrt{n}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})$:

$$
\mathbf{V}_{\boldsymbol{\beta}}^{\imath m}=\mathbf{Q}_{\mathbf{X} \mathbf{x}}^{-1} \mathbb{E}\left[e_{i}^{2}\right] \mathbf{Q}_{\mathbf{X X} \mathbf{X}} \mathbf{Q}_{\mathbf{X} \mathbf{x}}^{-1}=\sigma^{2} \mathbf{Q}_{\mathbf{X} \mathbf{X}}^{1}
$$

- Estimated variance of $\hat{\beta}$ under homoskedasticity

$$
s^{2}=\frac{1}{n-k} \sum_{i=1}^{n} \hat{e}_{i}^{2} \quad \widehat{\mathbf{V}}_{\hat{\beta}}^{l m}=\frac{1}{n} s^{2}\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right)^{-1}=s^{2}\left(\mathcal{X}^{\prime} \mathcal{X}\right)^{-1}
$$

- LLN implies $s^{2} \xrightarrow{p} \sigma^{2}$ and so $n \widehat{\mathbf{V}}_{\hat{\beta}}^{l m}$ is consistent for $\mathbf{V}_{\beta}^{l m}$
- Homoskedasticity: strong assumption that isn't needed for consistency.

Notes on skedasticity

- Homoskedasticity: strong assumption that isn't needed for consistency.
- Software: almost always reports $\widehat{\mathbf{V}}_{\hat{\beta}}^{\mathrm{lm}}$ by default.

Notes on skedasticity

- Homoskedasticity: strong assumption that isn't needed for consistency.
- Software: almost always reports $\widehat{\mathbf{V}}_{\hat{\beta}}^{l m}$ by default.
- e.g. lm() in R or reg in Stata.

Notes on skedasticity

- Homoskedasticity: strong assumption that isn't needed for consistency.
- Software: almost always reports $\widehat{\mathbf{V}}_{\hat{\beta}}^{l m}$ by default.
- e.g. lm() in R or reg in Stata.
- Separate commands for HC SEs $\widehat{\mathbf{V}}_{\hat{\beta}}$

Notes on skedasticity

- Homoskedasticity: strong assumption that isn't needed for consistency.
- Software: almost always reports $\widehat{\mathbf{V}}_{\hat{\beta}}^{l m}$ by default.
- e.g. lm() in R or reg in Stata.
- Separate commands for HC SEs $\widehat{\mathbf{V}}_{\hat{\beta}}$
- Use \{sandwich\} package in R or , robust in Stata.

Notes on skedasticity

- Homoskedasticity: strong assumption that isn't needed for consistency.
- Software: almost always reports $\widehat{\mathbf{V}}_{\hat{\beta}}^{l m}$ by default.
- e.g. lm() in R or reg in Stata.
- Separate commands for HC SEs $\widehat{\mathbf{V}}_{\hat{\beta}}$
- Use \{sandwich \} package in R or , robust in Stata.
- If $\widehat{\mathbf{V}}_{\hat{\beta}}^{l m}$ and $\widehat{\mathbf{V}}_{\hat{\beta}}$ differ a lot, maybe check modeling assumptions (King and Roberts, PA 2015)

Notes on skedasticity

- Homoskedasticity: strong assumption that isn't needed for consistency.
- Software: almost always reports $\widehat{\mathbf{V}}_{\hat{\beta}}^{l m}$ by default.
- e.g. $\operatorname{lm}()$ in R or reg in Stata.
- Separate commands for HC SEs $\widehat{\mathbf{V}}_{\hat{\beta}}$
- Use \{sandwich\} package in R or , robust in Stata.
- If $\widehat{\mathbf{V}}_{\hat{\beta}}^{l m}$ and $\widehat{\mathbf{V}}_{\hat{\beta}}$ differ a lot, maybe check modeling assumptions (King and Roberts, PA 2015)
- Lots of "flavors" of HC variance estimators (HC0, HC1, HC2, etc).

Notes on skedasticity

- Homoskedasticity: strong assumption that isn't needed for consistency.
- Software: almost always reports $\widehat{\mathbf{V}}_{\hat{\beta}}^{l m}$ by default.
- e.g. lm() in R or reg in Stata.
- Separate commands for HC SEs $\widehat{\mathbf{V}}_{\hat{\beta}}$
- Use \{sandwich\} package in R or , robust in Stata.
- If $\widehat{\mathbf{V}}_{\hat{\beta}}^{l m}$ and $\widehat{\mathbf{V}}_{\hat{\beta}}$ differ a lot, maybe check modeling assumptions (King and Roberts, PA 2015)
- Lots of "flavors" of HC variance estimators (HCO, HC1, HC2, etc).
- Mostly small, ad hoc changes to improve finite-sample performance.

AJR data

```
library(sandwich)
mod <- lm(logpgp95 ~ avexpr + lat_abst + meantemp, data = ajr)
vcov(mod) ## homoskdastic V_\hat{beta}
```

\#\#	(Intercept)	avexpr	lat_abst	meantemp
\#\# (Intercept)	0.9079	-0.040952	-0.537463	-0.023246
\#\# avexpr	-0.0410	0.004162	-0.000778	0.000605
\#\# lat_abst	-0.5375	-0.000778	0.867588	0.016717
\#\# meantemp	-0.0232	0.000605	0.016717	0.000705

sandwich:: vcovHC(mod, type = "HC2") \#\# HC2

\#\#	(Intercept)	avexpr	lat_abst	meantemp
\#\# (Intercept)	0.9764	-0.05735	-0.29548	-0.024639
\#\# avexpr	-0.0573	0.00538	-0.00358	0.001107
\#\# lat_abst	-0.2955	-0.00358	0.60821	0.008792
\#\# meantemp	-0.0246	0.00111	0.00879	0.000706

Inference with OLS

- Inference is basically the same as any asymptotically normal estimator.

Inference with OLS

- Inference is basically the same as any asymptotically normal estimator.
- Let $\widehat{\operatorname{se}(}\left(\hat{\beta}_{j}\right)$ be the estimated SE for $\hat{\beta}_{j}$.

Inference with OLS

- Inference is basically the same as any asymptotically normal estimator.
- Let $\widehat{\operatorname{se}(}\left(\hat{\beta}_{j}\right)$ be the estimated SE for $\hat{\beta}_{j}$.
- Square root of j th diagonal entry: $\sqrt{\left[\widehat{\mathrm{V}}_{\hat{\beta}}\right]_{j j}}$

Inference with OLS

- Inference is basically the same as any asymptotically normal estimator.
- Let $\widehat{\operatorname{se}(}\left(\hat{\beta}_{j}\right)$ be the estimated SE for $\hat{\beta}_{j}$.
- Square root of j th diagonal entry: $\sqrt{\left[\widehat{\mathbf{V}}_{\hat{\beta}}\right]_{j j}}$
- Hypothesis test of $\beta_{j}=b_{0}$:

$$
\text { general t-statistic }=\frac{\hat{\beta}_{j}-b_{0}}{\widehat{\operatorname{se}}\left(\hat{\beta}_{j}\right)} \quad \text { "usual" t-statistic }=\frac{\hat{\beta}_{j}}{\widehat{\operatorname{se}}\left(\hat{\beta}_{j}\right)}
$$

Inference with OLS

- Inference is basically the same as any asymptotically normal estimator.
- Let $\widehat{\operatorname{se}}\left(\hat{\beta}_{j}\right)$ be the estimated SE for $\hat{\beta}_{j}$.
- Square root of j th diagonal entry: $\sqrt{\left[\widehat{\mathbf{V}}_{\hat{\beta}}\right]_{j j}}$
- Hypothesis test of $\beta_{j}=b_{0}$:

$$
\text { general t-statistic }=\frac{\hat{\beta}_{j}-b_{0}}{\widehat{\operatorname{se}}\left(\hat{\beta}_{j}\right)} \quad \text { "usual" t-statistic }=\frac{\hat{\beta}_{j}}{\widehat{\operatorname{se}}\left(\hat{\beta}_{j}\right)}
$$

- Use same critical values from the normal as usual $z_{\alpha / 2}=1.96$.

Inference with OLS

- Inference is basically the same as any asymptotically normal estimator.
- Let $\widehat{\operatorname{se}}\left(\hat{\beta}_{j}\right)$ be the estimated SE for $\hat{\beta}_{j}$.
- Square root of j th diagonal entry: $\sqrt{\left[\widehat{\mathbf{V}}_{\hat{\beta}}\right]_{j j}}$
- Hypothesis test of $\beta_{j}=b_{0}$:

$$
\text { general t-statistic }=\frac{\hat{\beta}_{j}-b_{0}}{\widehat{\operatorname{se}}\left(\hat{\beta}_{j}\right)} \quad \text { "usual" t-statistic }=\frac{\hat{\beta}_{j}}{\widehat{\operatorname{se}}\left(\hat{\beta}_{j}\right)}
$$

- Use same critical values from the normal as usual $z_{\alpha / 2}=1.96$.
- 95% (asymptotic) confidence interval for $\hat{\beta}_{j}$:

$$
\left[\hat{\beta}_{j}-1.96 \widehat{\operatorname{se}}\left(\hat{\beta}_{j}\right), \hat{\beta}_{j}+1.96 \widehat{\operatorname{se}}\left(\hat{\beta}_{j}\right)\right]
$$

Inference with OLS

- Inference is basically the same as any asymptotically normal estimator.
- Let $\widehat{\operatorname{se}(}\left(\hat{\beta}_{j}\right)$ be the estimated SE for $\hat{\beta}_{j}$.
- Square root of j th diagonal entry: $\sqrt{\left[\widehat{\mathbf{V}}_{\hat{\beta}}\right]_{j j}}$
- Hypothesis test of $\beta_{j}=b_{0}$:

$$
\text { general t-statistic }=\frac{\hat{\beta}_{j}-b_{0}}{\widehat{\operatorname{se}}\left(\hat{\beta}_{j}\right)} \quad \text { "usual" t-statistic }=\frac{\hat{\beta}_{j}}{\widehat{\operatorname{se}}\left(\hat{\beta}_{j}\right)}
$$

- Use same critical values from the normal as usual $z_{\alpha / 2}=1.96$.
- 95% (asymptotic) confidence interval for $\hat{\beta}_{j}$:

$$
\left[\hat{\beta}_{j}-1.96 \widehat{\operatorname{se}(}\left(\hat{\beta}_{j}\right), \hat{\beta}_{j}+1.96 \widehat{\operatorname{se}}\left(\hat{\beta}_{j}\right)\right]
$$

- Software often uses t critical values instead of normal (we'll see why).

Inference with lmtest : : coeftest()

```
library(lmtest)
## homoskedastic error
lmtest::coeftest(mod)
```

\#\#
\#\# t test of coefficients:
\#\#

\#\#	Estimate Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$				
\#\# (Intercept)	6.9289	0.9528	7.27	$1.2 \mathrm{e}-09$ ***	
\#\# avexpr	0.4059	0.0645	6.29	$5.1 \mathrm{e}-08 \quad$ ***	
\#\# lat_abst	-0.1980	0.9314	-0.21	0.832	
\#\# meantemp	-0.0641	0.0266	-2.41	0.019 *	

\#\# ---
\#\# Signif. codes:
\#\# 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
\#\# HC2 variance estimator
lmtest::coeftest(mod, vcov = vcovHC(mod, type = "HC2"))

3/ Inference for Multiple Parameters

Inference for interactions

$$
m(x, z)=\beta_{0}+X \beta_{1}+Z \beta_{2}+X Z \beta_{3}
$$

Inference for interactions

$$
m(x, z)=\beta_{0}+X \beta_{1}+Z \beta_{2}+X Z \beta_{3}
$$

- Partial or marginal effect of X at $Z: \frac{\partial m(x, z)}{\partial x}=\beta_{1}+z \beta_{3}$

Inference for interactions

$$
m(x, z)=\beta_{0}+X \beta_{1}+Z \beta_{2}+X Z \beta_{3}
$$

- Partial or marginal effect of X at $Z: \frac{\partial m(x, z)}{\partial x}=\beta_{1}+z \beta_{3}$
- Estimate it by plugging in the estimated coefficients: $\frac{\partial \widehat{m}(x, z)}{\partial x}=\hat{\beta}_{1}+z \hat{\beta}_{3}$

Inference for interactions

$$
m(x, z)=\beta_{0}+X \beta_{1}+Z \beta_{2}+X Z \beta_{3}
$$

- Partial or marginal effect of X at $Z: \frac{\partial m(x, z)}{\partial x}=\beta_{1}+z \beta_{3}$
- Estimate it by plugging in the estimated coefficients: $\frac{\partial \widehat{m}(x, z)}{\partial x}=\hat{\beta}_{1}+z \hat{\beta}_{3}$
- What if we want the variance of this effect for any value of Z ?

$$
\vee\left(\frac{\partial \widehat{m}(x, z)}{\partial x}\right)=\vee\left[\hat{\beta}_{1}+z \hat{\beta}_{3}\right]=\mathbb{V}\left[\hat{\beta}_{1}\right]+z^{2} \vee\left[\hat{\beta}_{3}\right]+2 z \operatorname{cov}\left[\hat{\beta}_{1}, \hat{\beta}_{3}\right]
$$

Inference for interactions

$$
m(x, z)=\beta_{0}+X \beta_{1}+Z \beta_{2}+X Z \beta_{3}
$$

- Partial or marginal effect of X at $Z: \frac{\partial m(x, z)}{\partial x}=\beta_{1}+z \beta_{3}$
- Estimate it by plugging in the estimated coefficients: $\frac{\partial \widehat{m}(x, z)}{\partial x}=\hat{\beta}_{1}+z \hat{\beta}_{3}$
- What if we want the variance of this effect for any value of Z ?

$$
\vee\left(\frac{\partial \widehat{m}(x, z)}{\partial x}\right)=\vee\left[\hat{\beta}_{1}+z \hat{\beta}_{3}\right]=\mathbb{V}\left[\hat{\beta}_{1}\right]+z^{2} \vee\left[\hat{\beta}_{3}\right]+2 z \operatorname{cov}\left[\hat{\beta}_{1}, \hat{\beta}_{3}\right]
$$

- Use the estimated covariance matrix:

$$
\hat{V}\left(\frac{\partial \widehat{m}(x, z)}{\partial x}\right)=\widehat{V}_{\widehat{\beta}_{1}}+z^{2} \widehat{V}_{\widehat{\beta}_{3}}+2 z \widehat{V}_{\widehat{\beta}_{1} \widehat{\beta}_{3}}
$$

Inference for interactions

$$
m(x, z)=\beta_{0}+X \beta_{1}+Z \beta_{2}+X Z \beta_{3}
$$

- Partial or marginal effect of X at $Z: \frac{\partial m(x, z)}{\partial x}=\beta_{1}+z \beta_{3}$
- Estimate it by plugging in the estimated coefficients: $\frac{\partial \widehat{m}(x, z)}{\partial x}=\hat{\beta}_{1}+z \hat{\beta}_{3}$
- What if we want the variance of this effect for any value of Z ?

$$
\vee\left(\frac{\partial \widehat{m}(x, z)}{\partial x}\right)=\vee\left[\hat{\beta}_{1}+z \hat{\beta}_{3}\right]=\mathbb{V}\left[\hat{\beta}_{1}\right]+z^{2} \vee\left[\hat{\beta}_{3}\right]+2 z \operatorname{cov}\left[\hat{\beta}_{1}, \hat{\beta}_{3}\right]
$$

- Use the estimated covariance matrix:

$$
\hat{V}\left(\frac{\partial \widehat{m}(x, z)}{\partial x}\right)=\widehat{V}_{\widehat{\beta}_{1}}+z^{2} \widehat{V}_{\widehat{\beta}_{3}}+2 z \widehat{V}_{\widehat{\beta}_{1} \widehat{\beta}_{3}}
$$

- $\widehat{V}_{\widehat{\beta}_{1}}$ is the diagonal entry of $\widehat{\widehat{\beta}}_{\widehat{\beta}}$ for $\widehat{\beta}_{1}$

Visualizing via marginaleffects

```
int_mod <- lm(logpgp95 ~ avexpr * lat_abst + meantemp, data = ajr)
coeftest(int_mod)
```

```
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.9864 0.9273 7.53 5e-10
## avexpr 0.5491 0.0941 5.84 3e-07
## lat_abst 5.8152 3.0791 1.89 0.0642
## meantemp -0.1048 0.0326 -3.21 0.0022
## avexpr:lat_abst -0.9095 0.4451 -2.04 0.0458
##
## (Intercept) ***
## avexpr ***
## lat_abst
## meantemp **
## avexpr:lat_abst *
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Visualizing marginal effects

```
library(marginaleffects)
plot_slopes(int_mod, variables = "avexpr", condition = "lat_abst")
```


Tests of multiple coefficients

$$
m(X, Z)=\beta_{0}+X \beta_{1}+Z \beta_{2}+X Z \beta_{3}
$$

- What about a test of no effect of X ever? Involves 2 coeffcients:

$$
H_{0}: \beta_{1}=\beta_{3}=0
$$

Tests of multiple coefficients

$$
m(X, Z)=\beta_{0}+X \beta_{1}+Z \beta_{2}+X Z \beta_{3}
$$

- What about a test of no effect of X ever? Involves 2 coeffcients:

$$
H_{0}: \beta_{1}=\beta_{3}=0
$$

- Alternative: $H_{1}: \beta_{1} \neq 0$ or $\beta_{3} \neq 0$

Tests of multiple coefficients

$$
m(X, Z)=\beta_{0}+X \beta_{1}+Z \beta_{2}+X Z \beta_{3}
$$

- What about a test of no effect of X ever? Involves 2 coeffcients:

$$
H_{0}: \beta_{1}=\beta_{3}=0
$$

- Alternative: $H_{1}: \beta_{1} \neq 0$ or $\beta_{3} \neq 0$
- We would like a test statistic that is large when the null is implausible.

Tests of multiple coefficients

$$
m(X, Z)=\beta_{0}+X \beta_{1}+Z \beta_{2}+X Z \beta_{3}
$$

- What about a test of no effect of X ever? Involves 2 coeffcients:

$$
H_{0}: \beta_{1}=\beta_{3}=0
$$

- Alternative: $H_{1}: \beta_{1} \neq 0$ or $\beta_{3} \neq 0$
- We would like a test statistic that is large when the null is implausible.
- What about $\hat{\beta}_{1}^{2}+\hat{\beta}_{3}^{2}$?

Tests of multiple coefficients

$$
m(X, Z)=\beta_{0}+X \beta_{1}+Z \beta_{2}+X Z \beta_{3}
$$

- What about a test of no effect of X ever? Involves 2 coeffcients:

$$
H_{0}: \beta_{1}=\beta_{3}=0
$$

- Alternative: $H_{1}: \beta_{1} \neq 0$ or $\beta_{3} \neq 0$
- We would like a test statistic that is large when the null is implausible.
- What about $\hat{\beta}_{1}^{2}+\hat{\beta}_{3}^{2}$?
- Distribution depends on the variance/covariance of the coefficients.

Tests of multiple coefficients

$$
m(X, Z)=\beta_{0}+X \beta_{1}+Z \beta_{2}+X Z \beta_{3}
$$

- What about a test of no effect of X ever? Involves 2 coeffcients:

$$
H_{0}: \beta_{1}=\beta_{3}=0
$$

- Alternative: $H_{1}: \beta_{1} \neq 0$ or $\beta_{3} \neq 0$
- We would like a test statistic that is large when the null is implausible.
- What about $\hat{\beta}_{1}^{2}+\hat{\beta}_{3}^{2}$?
- Distribution depends on the variance/covariance of the coefficients.
- Need to normalize like the t-statistic.

Alternative test for one coefficient

- Usually t-test of $H_{0}: \beta_{j}=b_{0}$ based on the t-statistic:

$$
t=\frac{\hat{\beta}_{j}-b_{0}}{\widehat{\operatorname{se}}\left(\hat{\beta}_{j}\right)},
$$

Alternative test for one coefficient

- Usually t-test of $H_{0}: \beta_{j}=b_{0}$ based on the t-statistic:

$$
t=\frac{\hat{\beta}_{j}-b_{0}}{\widehat{\operatorname{se}}\left(\hat{\beta}_{j}\right)},
$$

- Reject when $|t|>c$ for some critical value c from the standard normal.

Alternative test for one coefficient

- Usually t-test of H_{0} : $\beta_{j}=b_{0}$ based on the t-statistic:

$$
t=\frac{\hat{\beta}_{j}-b_{0}}{\widehat{\operatorname{se}}\left(\hat{\beta}_{j}\right)},
$$

- Reject when $|t|>c$ for some critical value c from the standard normal.
- Equivalent test based rejects when $t^{2}>c^{2}$

$$
t^{2}=\frac{\left(\hat{\beta}_{j}-b_{0}\right)^{2}}{V\left[\hat{\beta}_{j}\right]}=\frac{n\left(\hat{\beta}_{j}-b_{0}\right)^{2}}{\left[\mathbf{V}_{\beta}\right]_{j j}}
$$

Alternative test for one coefficient

- Usually t-test of $H_{0}: \beta_{j}=b_{0}$ based on the t-statistic:

$$
t=\frac{\hat{\beta}_{j}-b_{0}}{\widehat{\operatorname{se}}\left(\hat{\beta}_{j}\right)},
$$

- Reject when $|t|>c$ for some critical value c from the standard normal.
- Equivalent test based rejects when $t^{2}>c^{2}$

$$
t^{2}=\frac{\left(\hat{\beta}_{j}-b_{0}\right)^{2}}{V\left[\hat{\beta}_{j}\right]}=\frac{n\left(\hat{\beta}_{j}-b_{0}\right)^{2}}{\left[\mathbf{V}_{\beta}\right]_{j j}}
$$

- Because $t \xrightarrow{d} \mathcal{N}(0,1)$, we'll have t^{2} converging to a χ_{1}^{2} distribution

Alternative test for one coefficient

- Usually t-test of $H_{0}: \beta_{j}=b_{0}$ based on the t-statistic:

$$
t=\frac{\hat{\beta}_{j}-b_{0}}{\widehat{\operatorname{se}}\left(\hat{\beta}_{j}\right)},
$$

- Reject when $|t|>c$ for some critical value c from the standard normal.
- Equivalent test based rejects when $t^{2}>c^{2}$

$$
t^{2}=\frac{\left(\hat{\beta}_{j}-b_{0}\right)^{2}}{V\left[\hat{\beta}_{j}\right]}=\frac{n\left(\hat{\beta}_{j}-b_{0}\right)^{2}}{\left[\mathbf{V}_{\beta}\right]_{j j}}
$$

- Because $t \xrightarrow{d} \mathcal{N}(0,1)$, we'll have t^{2} converging to a χ_{1}^{2} distribution
- Reminder: χ_{k}^{2} is the sum of k squared standard normals.

Alternative test for one coefficient

- Usually t-test of $H_{0}: \beta_{j}=b_{0}$ based on the t-statistic:

$$
t=\frac{\hat{\beta}_{j}-b_{0}}{\widehat{\operatorname{se}}\left(\hat{\beta}_{j}\right)},
$$

- Reject when $|t|>c$ for some critical value c from the standard normal.
- Equivalent test based rejects when $t^{2}>c^{2}$

$$
t^{2}=\frac{\left(\hat{\beta}_{j}-b_{0}\right)^{2}}{\mathbb{V}\left[\hat{\beta}_{j}\right]}=\frac{n\left(\hat{\beta}_{j}-b_{0}\right)^{2}}{\left[\mathbf{V}_{\beta}\right]_{j j}}
$$

- Because $t \xrightarrow{d} \mathcal{N}(0,1)$, we'll have t^{2} converging to a χ_{1}^{2} distribution
- Reminder: χ_{k}^{2} is the sum of k squared standard normals.
- Could get the critical value for t^{2} directly from χ_{1}^{2}.

Rewriting hypotheses with matrices

- We can rewrite the null hypothesis as $H_{0}: \mathbf{L} \beta=\mathbf{c}$ where,

$$
\mathbf{L}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \mathbf{c}=\binom{0}{0}
$$

Rewriting hypotheses with matrices

- We can rewrite the null hypothesis as $H_{0}: \mathbf{L} \boldsymbol{\beta}=\mathbf{c}$ where,

$$
\mathbf{L}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \mathbf{c}=\binom{0}{0}
$$

- \mathbf{L} has q rows or restriction and $k+1$ columns (one for each coefficient)

Rewriting hypotheses with matrices

- We can rewrite the null hypothesis as $H_{0}: \mathbf{L} \boldsymbol{\beta}=\mathbf{c}$ where,

$$
\mathbf{L}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \mathbf{c}=\binom{0}{0}
$$

- \mathbf{L} has q rows or restriction and $k+1$ columns (one for each coefficient)
- Estimated version of the constraint: $\mathbf{L} \hat{\beta}$

Rewriting hypotheses with matrices

- We can rewrite the null hypothesis as $H_{0}: \mathbf{L} \boldsymbol{\beta}=\mathbf{c}$ where,

$$
\mathbf{L}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \mathbf{c}=\binom{0}{0}
$$

- L has q rows or restriction and $k+1$ columns (one for each coefficient)
- Estimated version of the constraint: $\mathbf{L} \hat{\beta}$
- By the Delta method, under the null hypothesis we have

$$
\sqrt{n}(\mathbf{L} \hat{\beta}-\mathbf{L} \boldsymbol{\beta}) \xrightarrow{d} \mathcal{N}\left(0, \mathbf{L}^{\prime} \mathbf{V}_{\beta} \mathbf{L}\right) .
$$

Rewriting hypotheses with matrices

- We can rewrite the null hypothesis as $H_{0}: \mathbf{L} \beta=\mathbf{c}$ where,

$$
\mathbf{L}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \mathbf{c}=\binom{0}{0}
$$

- L has q rows or restriction and $k+1$ columns (one for each coefficient)
- Estimated version of the constraint: $\mathbf{L} \hat{\beta}$
- By the Delta method, under the null hypothesis we have

$$
\sqrt{n}(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{L} \boldsymbol{\beta}) \xrightarrow{d} \mathcal{N}\left(0, \mathbf{L}^{\prime} \mathbf{V}_{\beta} \mathbf{L}\right) .
$$

- In this case:

$$
\sqrt{n}\left(\left[\begin{array}{l}
\hat{\beta}_{1} \\
\hat{\beta}_{3}
\end{array}\right]\right) \xrightarrow{d} \mathcal{N}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{ll}
{\left[\mathbf{V}_{\beta}\right]_{[11]}} & {\left[\mathbf{V}_{\beta}\right]_{[13]}} \\
{\left[\mathbf{V}_{\boldsymbol{\beta}}\right]_{[31]}} & \left.\left[\mathbf{V}_{\boldsymbol{\beta}}\right]_{[33]}\right]
\end{array}\right)\right.
$$

Rewriting hypotheses with matrices

- We can rewrite the null hypothesis as $H_{0}: \mathbf{L} \beta=\mathbf{c}$ where,

$$
\mathbf{L}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \mathbf{c}=\binom{0}{0}
$$

- L has q rows or restriction and $k+1$ columns (one for each coefficient)
- Estimated version of the constraint: $\mathbf{L} \hat{\beta}$
- By the Delta method, under the null hypothesis we have

$$
\sqrt{n}(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{L} \boldsymbol{\beta}) \xrightarrow{d} \mathcal{N}\left(0, \mathbf{L}^{\prime} \mathbf{V}_{\beta} \mathbf{L}\right)
$$

- In this case:

$$
\sqrt{n}\left(\left[\begin{array}{l}
\hat{\beta}_{1} \\
\hat{\beta}_{3}
\end{array}\right]\right) \xrightarrow{d} \mathcal{N}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{ll}
{\left[\mathbf{V}_{\boldsymbol{\beta}}\right]_{[11]}} & {\left[\mathbf{V}_{\beta}\right]_{[13]}} \\
{\left[\mathbf{V}_{\beta}\right]_{[31]}} & {\left[\mathbf{V}_{\beta}\right]_{[33]}}
\end{array}\right]\right)
$$

- If this covariance matrix where identity, then these would be standard normal and $\hat{\beta}_{1}^{2}+\hat{\beta}_{3}^{2}$ would be χ_{2}^{2} under the null
- Under the null, $\sqrt{n}(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{c}) \xrightarrow{d} \mathcal{N}\left(0, \mathbf{L}^{\prime} \mathbf{V}_{\boldsymbol{\beta}} \mathbf{L}\right)$
- Under the null, $\sqrt{n}(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{c}) \xrightarrow{d} \mathcal{N}\left(0, \mathbf{L}^{\prime} \mathbf{V}_{\boldsymbol{\beta}} \mathbf{L}\right)$
- $(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{c})^{\prime}(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{c})$ is the squared deviations from the null.
- Under the null, $\sqrt{n}(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{c}) \xrightarrow{d} \mathcal{N}\left(0, \mathbf{L}^{\prime} \mathbf{V}_{\boldsymbol{\beta}} \mathbf{L}\right)$
- $(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{c})^{\prime}(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{c})$ is the squared deviations from the null.
- Problem: doesn't account for variance/covariance of the estimated coefficients.

Wald statistic

- Under the null, $\sqrt{n}(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{c}) \xrightarrow{d} \mathcal{N}\left(0, \mathbf{L}^{\prime} \mathbf{V}_{\boldsymbol{\beta}} \mathbf{L}\right)$
- $(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{c})^{\prime}(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{c})$ is the squared deviations from the null.
- Problem: doesn't account for variance/covariance of the estimated coefficients.
- Wald statistic normalize by the covariance matrix:

$$
W=n(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{c})^{\prime}\left(\mathbf{L}^{\prime} \widehat{\mathbf{V}}_{\beta} \mathbf{L}\right)^{-1}(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{c})
$$

Wald statistic

- Under the null, $\sqrt{n}(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{c}) \xrightarrow{d} \mathcal{N}\left(0, \mathbf{L}^{\prime} \mathbf{V}_{\boldsymbol{\beta}} \mathbf{L}\right)$
- $(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{c})^{\prime}(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{c})$ is the squared deviations from the null.
- Problem: doesn't account for variance/covariance of the estimated coefficients.
- Wald statistic normalize by the covariance matrix:

$$
W=n(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{c})^{\prime}\left(\mathbf{L}^{\prime} \widehat{\mathbf{V}}_{\beta} \mathbf{L}\right)^{-1}(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{c})
$$

- Similar to dividing by the SE for the t-test

Wald statistic

- Under the null, $\sqrt{n}(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{c}) \xrightarrow{d} \mathcal{N}\left(0, \mathbf{L}^{\prime} \mathbf{V}_{\boldsymbol{\beta}} \mathbf{L}\right)$
- $(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{c})^{\prime}(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{c})$ is the squared deviations from the null.
- Problem: doesn't account for variance/covariance of the estimated coefficients.
- Wald statistic normalize by the covariance matrix:

$$
W=n(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{c})^{\prime}\left(\mathbf{L}^{\prime} \widehat{\mathbf{V}}_{\beta} \mathbf{L}\right)^{-1}(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{c})
$$

- Similar to dividing by the SE for the t-test
- Squared distance of observed values from the null, weighted by the distribution of the parameters under the null

Weighting by the distribution

$$
W=n(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{c})^{\prime}\left(\mathbf{L}^{\prime} \widehat{\mathbf{V}}_{\boldsymbol{\beta}} \mathbf{L}\right)^{-1}(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{c})
$$

- Asymptotically under the null $W \xrightarrow{d} \chi_{q}^{2}$ where q is rows of \mathbf{L}

$$
W=n(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{c})^{\prime}\left(\mathbf{L}^{\prime} \widehat{\mathbf{V}}_{\beta} \mathbf{L}\right)^{-1}(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{c})
$$

- Asymptotically under the null $W \xrightarrow{d} \chi_{q}^{2}$ where q is rows of \mathbf{L}
- q is the number of linear restrictions in the null

$$
W=n(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{c})^{\prime}\left(\mathbf{L}^{\prime} \widehat{\mathbf{V}}_{\beta} \mathbf{L}\right)^{-1}(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{c})
$$

- Asymptotically under the null $W \xrightarrow{d} \chi_{q}^{2}$ where q is rows of \mathbf{L}
- q is the number of linear restrictions in the null
- Wald test: reject when $W>w_{\alpha}$, where $\mathbb{P}\left(W>w_{\alpha}\right)=\alpha$ under the null.

$$
W=n(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{c})^{\prime}\left(\mathbf{L}^{\prime} \widehat{\mathbf{V}}_{\beta} \mathbf{L}\right)^{-1}(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{c})
$$

- Asymptotically under the null $W \xrightarrow{d} \chi_{q}^{2}$ where q is rows of \mathbf{L}
- q is the number of linear restrictions in the null
- Wald test: reject when $W>w_{\alpha}$, where $\mathbb{P}\left(W>w_{\alpha}\right)=\alpha$ under the null.
- Use χ_{q}^{2} distribution for critical values, p -values

$$
W=n(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{c})^{\prime}\left(\mathbf{L}^{\prime} \widehat{\mathbf{V}}_{\beta} \mathbf{L}\right)^{-1}(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{c})
$$

- Asymptotically under the null $W \xrightarrow{d} \chi_{q}^{2}$ where q is rows of \mathbf{L}
- q is the number of linear restrictions in the null
- Wald test: reject when $W>w_{\alpha}$, where $\mathbb{P}\left(W>w_{\alpha}\right)=\alpha$ under the null.
- Use χ_{q}^{2} distribution for critical values, p-values
- Typical software output: F-statistic $F=W / q$

$$
W=n(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{c})^{\prime}\left(\mathbf{L}^{\prime} \widehat{\mathbf{V}}_{\beta} \mathbf{L}\right)^{-1}(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{c})
$$

- Asymptotically under the null $W \xrightarrow{d} \chi_{q}^{2}$ where q is rows of \mathbf{L}
- q is the number of linear restrictions in the null
- Wald test: reject when $W>w_{\alpha}$, where $\mathbb{P}\left(W>w_{\alpha}\right)=\alpha$ under the null.
- Use χ_{q}^{2} distribution for critical values, p -values
- Typical software output: F-statistic $F=W / q$
- p-values and critical values come from F distribution with q and $n-k-1 \mathrm{dfs}$.

$$
W=n(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{c})^{\prime}\left(\mathbf{L}^{\prime} \widehat{\mathbf{V}}_{\beta} \mathbf{L}\right)^{-1}(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{c})
$$

- Asymptotically under the null $W \xrightarrow{d} \chi_{q}^{2}$ where q is rows of \mathbf{L}
- q is the number of linear restrictions in the null
- Wald test: reject when $W>w_{\alpha}$, where $\mathbb{P}\left(W>w_{\alpha}\right)=\alpha$ under the null.
- Use χ_{q}^{2} distribution for critical values, p -values
- Typical software output: F-statistic $F=W / q$
- p-values and critical values come from F distribution with q and $n-k-1 \mathrm{dfs}$.
- As $n \rightarrow \infty, F_{q, n-k-1} \xrightarrow{d} \chi_{q}^{2}$ so asymptotically similar to Wald under homoskedascity (slightly more conservative).

$$
W=n(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{c})^{\prime}\left(\mathbf{L}^{\prime} \widehat{\mathbf{V}}_{\beta} \mathbf{L}\right)^{-1}(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{c})
$$

- Asymptotically under the null $W \xrightarrow{d} \chi_{q}^{2}$ where q is rows of \mathbf{L}
- q is the number of linear restrictions in the null
- Wald test: reject when $W>w_{\alpha}$, where $\mathbb{P}\left(W>w_{\alpha}\right)=\alpha$ under the null.
- Use χ_{q}^{2} distribution for critical values, p -values
- Typical software output: F-statistic $F=W / q$
- p-values and critical values come from F distribution with q and $n-k-1 \mathrm{dfs}$.
- As $n \rightarrow \infty, F_{q, n-k-1} \xrightarrow{d} \chi_{q}^{2}$ so asymptotically similar to Wald under homoskedascity (slightly more conservative).
- No justification for F test under heteroskedasticity.

$$
W=n(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{c})^{\prime}\left(\mathbf{L}^{\prime} \widehat{\mathbf{V}}_{\beta} \mathbf{L}\right)^{-1}(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{c})
$$

- Asymptotically under the null $W \xrightarrow{d} \chi_{q}^{2}$ where q is rows of \mathbf{L}
- q is the number of linear restrictions in the null
- Wald test: reject when $W>w_{\alpha}$, where $\mathbb{P}\left(W>w_{\alpha}\right)=\alpha$ under the null.
- Use χ_{q}^{2} distribution for critical values, p -values
- Typical software output: F-statistic $F=W / q$
- p-values and critical values come from F distribution with q and $n-k-1 \mathrm{dfs}$.
- As $n \rightarrow \infty, F_{q, n-k-1} \xrightarrow{d} \chi_{q}^{2}$ so asymptotically similar to Wald under homoskedascity (slightly more conservative).
- No justification for F test under heteroskedasticity.
- "Usual" F-test reports test of all coef = 0 except intercept (pointless?)

Wald test steps

1. Choose a Type I error rate, α.

Wald test steps

1. Choose a Type I error rate, α.

- Same interpretation: rate of false positives you are willing to accept

Wald test steps

1. Choose a Type I error rate, α.

- Same interpretation: rate of false positives you are willing to accept

2. Calculate the rejection region for the test (one-sided)

Wald test steps

1. Choose a Type I error rate, α.

- Same interpretation: rate of false positives you are willing to accept

2. Calculate the rejection region for the test (one-sided)

- Rejection region is the region $W>w_{\alpha}$ such that $\mathbb{P}\left(W>w_{\alpha}\right)=\alpha$

Wald test steps

1. Choose a Type I error rate, α.

- Same interpretation: rate of false positives you are willing to accept

2. Calculate the rejection region for the test (one-sided)

- Rejection region is the region $W>w_{\alpha}$ such that $\mathbb{P}\left(W>w_{\alpha}\right)=\alpha$
- We can get this from R using the qchisq() function

Wald test steps

1. Choose a Type I error rate, α.

- Same interpretation: rate of false positives you are willing to accept

2. Calculate the rejection region for the test (one-sided)

- Rejection region is the region $W>w_{\alpha}$ such that $\mathbb{P}\left(W>w_{\alpha}\right)=\alpha$
- We can get this from R using the qchisq() function

3. Reject if observed statistic is bigger than critical value

Wald test steps

1. Choose a Type I error rate, α.

- Same interpretation: rate of false positives you are willing to accept

2. Calculate the rejection region for the test (one-sided)

- Rejection region is the region $W>w_{\alpha}$ such that $\mathbb{P}\left(W>w_{\alpha}\right)=\alpha$
- We can get this from R using the qchisq() function

3. Reject if observed statistic is bigger than critical value

- Use pchisq() to get p-values if needed.

Wald test steps

1. Choose a Type I error rate, α.

- Same interpretation: rate of false positives you are willing to accept

2. Calculate the rejection region for the test (one-sided)

- Rejection region is the region $W>w_{\alpha}$ such that $\mathbb{P}\left(W>w_{\alpha}\right)=\alpha$
- We can get this from R using the qchisq() function

3. Reject if observed statistic is bigger than critical value

- Use pchisq() to get p-values if needed.
- When applied to a single coefficient, equivalent to a t-test.

Wald test steps

1. Choose a Type I error rate, α.

- Same interpretation: rate of false positives you are willing to accept

2. Calculate the rejection region for the test (one-sided)

- Rejection region is the region $W>w_{\alpha}$ such that $\mathbb{P}\left(W>w_{\alpha}\right)=\alpha$
- We can get this from R using the qchisq() function

3. Reject if observed statistic is bigger than critical value

- Use pchisq() to get p-values if needed.
- When applied to a single coefficient, equivalent to a t-test.
- Use packages like \{lmtest\} or \{clubSandwich\} in R.

Wald test in lmtest

```
## run OLS with the restrictions imposed (avexpr removed)
restricted <- lm(logpgp95 ~ lat_abst + meantemp, data = ajr)
## pass estimated model and estimated null model to
## wald test with HC variance estimator
lmtest::waldtest(restricted, int_mod, test = "Chisq",
    vcov = vcovHC)
```

\#\# Wald test
\#\#
\#\# Model 1: logpgp95 ~ lat_abst + meantemp
\#\# Model 2: logpgp95 ~ avexpr * lat_abst + meantemp
\#\# Res.Df Df Chisq $\operatorname{Pr}(>C h i s q)$
\#\# 157
\#\# 255234.2 3.7e-08 ***
\#\# ---
\#\# Signif. codes:

- Separate t -tests for each β_{j} : α of them will be significant by chance.

Multiple testing

- Separate t -tests for each β_{j} : α of them will be significant by chance.
- Illustration:

Multiple testing

- Separate t-tests for each β_{j} : α of them will be significant by chance.
- Illustration:
- Randomly draw 21 variables independently.

Multiple testing

- Separate t -tests for each β_{j} : α of them will be significant by chance.
- Illustration:
- Randomly draw 21 variables independently.
- Run a regression of the first variable on the rest.

Multiple testing

- Separate t-tests for each β_{j} : α of them will be significant by chance.
- Illustration:
- Randomly draw 21 variables independently.
- Run a regression of the first variable on the rest.
- By design, no effect of any variable on any other.

Multiple test example

noise <- data.frame(matrix(rnorm(2100), nrow = 100, ncol = 21))
summary(lm(noise))

Multiple testing gives false positives

- 1 out of 20 variables significant at $\alpha=0.05$

Multiple testing gives false positives

- 1 out of 20 variables significant at $\alpha=0.05$
- 2 out of 20 variables significant at $\alpha=0.1$

Multiple testing gives false positives

- 1 out of 20 variables significant at $\alpha=0.05$
- 2 out of 20 variables significant at $\alpha=0.1$
- Exactly the number of false positives we would expect.

Multiple testing gives false positives

- 1 out of 20 variables significant at $\alpha=0.05$
- 2 out of 20 variables significant at $\alpha=0.1$
- Exactly the number of false positives we would expect.
- But notice the F-statistic: the variables are not jointly significant

Multiple testing gives false positives

- 1 out of 20 variables significant at $\alpha=0.05$
- 2 out of 20 variables significant at $\alpha=0.1$
- Exactly the number of false positives we would expect.
- But notice the F-statistic: the variables are not jointly significant
- Bonferroni correction: use p-value cutoff α / m where m is the number of hypotheses.

Multiple testing gives false positives

- 1 out of 20 variables significant at $\alpha=0.05$
- 2 out of 20 variables significant at $\alpha=0.1$
- Exactly the number of false positives we would expect.
- But notice the F-statistic: the variables are not jointly significant
- Bonferroni correction: use p-value cutoff α / m where m is the number of hypotheses.
- Example: $0.05 / 20=0.0025$

Multiple testing gives false positives

- 1 out of 20 variables significant at $\alpha=0.05$
- 2 out of 20 variables significant at $\alpha=0.1$
- Exactly the number of false positives we would expect.
- But notice the F-statistic: the variables are not jointly significant
- Bonferroni correction: use p-value cutoff α / m where m is the number of hypotheses.
- Example: $0.05 / 20=0.0025$
- Ensures that the family-wise error rate (probability of making at least 1 Type I error) is less than α.

4/ Linear Regression
Model and Finite-sample
Properties

Standard linear regression model

- Standard textbook model: correctly specified linear CEF

Standard linear regression model

- Standard textbook model: correctly specified linear CEF
- Designed for finite-sample results.

Standard linear regression model

- Standard textbook model: correctly specified linear CEF
- Designed for finite-sample results.

Assumption: Linear Regression Model

1. The variables (Y, \mathbf{X}) satisfy the the linear CEF assumption.

$$
\begin{aligned}
Y & =\mathbf{X}^{\prime} \boldsymbol{\beta}+e \\
\mathbb{E}[e \mid \mathbf{X}] & =0 .
\end{aligned}
$$

Standard linear regression model

- Standard textbook model: correctly specified linear CEF
- Designed for finite-sample results.

Assumption: Linear Regression Model

1. The variables (Y, \mathbf{X}) satisfy the the linear CEF assumption.

$$
\begin{aligned}
Y & =\mathbf{X}^{\prime} \boldsymbol{\beta}+e \\
\mathbb{E}[e \mid \mathbf{X}] & =0 .
\end{aligned}
$$

2. The design matrix is invertible $\mathbb{E}\left[\mathbf{X X}^{\prime}\right]>0$ (positive definite).

Standard linear regression model

- Standard textbook model: correctly specified linear CEF
- Designed for finite-sample results.

Assumption: Linear Regression Model

1. The variables (Y, \mathbf{X}) satisfy the the linear CEF assumption.

$$
\begin{aligned}
Y & =\mathbf{X}^{\prime} \boldsymbol{\beta}+e \\
\mathbb{E}[e \mid \mathbf{X}] & =0 .
\end{aligned}
$$

2. The design matrix is invertible $\mathbb{E}\left[\mathbf{X X}^{\prime}\right]>0$ (positive definite).

- Basically this assumes the CEF of Y given \mathbf{X} is linear.

Standard linear regression model

- Standard textbook model: correctly specified linear CEF
- Designed for finite-sample results.

Assumption: Linear Regression Model

1. The variables (Y, \mathbf{X}) satisfy the the linear CEF assumption.

$$
\begin{aligned}
Y & =\mathbf{X}^{\prime} \boldsymbol{\beta}+e \\
\mathbb{E}[e \mid \mathbf{X}] & =0 .
\end{aligned}
$$

2. The design matrix is invertible $\mathbb{E}\left[\mathbf{X X}^{\prime}\right]>0$ (positive definite).

- Basically this assumes the CEF of Y given \mathbf{X} is linear.
- We continue to maintain $\left\{\left(Y_{i}, \mathbf{X}_{i}\right)\right\}$ are i.i.d.

Properties of OLS under linear CEF

- Linear CEFs imply stronger finite-sample guarantees:

Properties of OLS under linear CEF

- Linear CEFs imply stronger finite-sample guarantees:

1. Unbiasedness: $\mathbb{E}[\hat{\beta} \mid X]=\boldsymbol{\beta}$

Properties of OLS under linear CEF

- Linear CEFs imply stronger finite-sample guarantees:

1. Unbiasedness: $\mathbb{E}[\hat{\boldsymbol{\beta}} \mid \mathcal{X}]=\boldsymbol{\beta}$
2. Conditional sampling variance: let $\sigma_{i}^{2}=\mathbb{E}\left[e_{i}^{2} \mid \mathbf{X}_{i}\right]$

$$
\mathbb{V}[\hat{\boldsymbol{\beta}} \mid \mathbb{X}]=\left(\mathbb{X}^{\prime} \mathbb{X}\right)^{-1}\left(\sum_{i=1}^{n} \sigma_{i}^{2} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right)\left(\mathbb{X}^{\prime} \mathbb{X}\right)^{-1}
$$

Properties of OLS under linear CEF

- Linear CEFs imply stronger finite-sample guarantees:

1. Unbiasedness: $\mathbb{E}[\hat{\beta} \mid X]=\boldsymbol{\beta}$
2. Conditional sampling variance: let $\sigma_{i}^{2}=\mathbb{E}\left[e_{i}^{2} \mid \mathbf{X}_{i}\right]$

$$
\mathbb{V}[\hat{\boldsymbol{\beta}} \mid \mathbb{X}]=\left(\mathbb{X}^{\prime} \mathbb{X}\right)^{-1}\left(\sum_{i=1}^{n} \sigma_{i}^{2} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right)\left(\mathbb{X}^{\prime} \mathcal{X}\right)^{-1}
$$

- Useful when linearity holds by default (discrete X in experiments, etc)

Linear CEF under homoskedasticity

- Under homoskedasticity, we have a few other finite-sample results:

Linear CEF under homoskedasticity

- Under homoskedasticity, we have a few other finite-sample results:

3. Conditional sampling variance: $\mathbb{V}[\hat{\boldsymbol{\beta}} \mid \mathcal{X}]=\sigma^{2}\left(\mathcal{X}^{\prime} \mathcal{X}\right)^{-1}$

Linear CEF under homoskedasticity

- Under homoskedasticity, we have a few other finite-sample results:

3. Conditional sampling variance: $\mathbb{V}[\hat{\boldsymbol{\beta}} \mid \mathbb{X}]=\sigma^{2}\left(\mathcal{X}^{\prime} \mathcal{X}\right)^{-1}$
4. Unbiased variance estimator: $\mathbb{E}\left[\hat{V}^{0}[\hat{\boldsymbol{\beta}}] \mid \mathbf{X}\right]=\sigma^{2}\left(\mathcal{K}^{\prime} \mathcal{X}\right)^{-1}$

Linear CEF under homoskedasticity

- Under homoskedasticity, we have a few other finite-sample results:

3. Conditional sampling variance: $\mathbb{V}[\hat{\boldsymbol{\beta}} \mid \mathbb{X}]=\sigma^{2}\left(\mathcal{X}^{\prime} \mathcal{X}\right)^{-1}$
4. Unbiased variance estimator: $\mathbb{E}\left[\hat{V}^{0}[\hat{\boldsymbol{\beta}}] \mid \mathbf{X}\right]=\sigma^{2}\left(\mathcal{K}^{\prime} \mathcal{X}\right)^{-1}$
5. Gauss-Markov: OLS is the best linear unbiased estimator of β (BLUE). If $\tilde{\beta}$ is a linear estimator,

$$
V[\tilde{\boldsymbol{\beta}} \mid \mathbb{X}] \geq \mathbb{V}[\hat{\boldsymbol{\beta}} \mid \mathbb{X}]=\sigma^{2}\left(\mathbb{X}^{\prime} \mathbb{X}\right)^{-1}
$$

Linear CEF under homoskedasticity

- Under homoskedasticity, we have a few other finite-sample results:

3. Conditional sampling variance: $\mathbb{V}[\hat{\boldsymbol{\beta}} \mid \mathbb{X}]=\sigma^{2}\left(\mathcal{X}^{\prime} \mathcal{X}\right)^{-1}$
4. Unbiased variance estimator: $\mathbb{E}\left[\hat{V}^{0}[\hat{\boldsymbol{\beta}}] \mid \mathbf{X}\right]=\sigma^{2}\left(\mathcal{K}^{\prime} \mathcal{X}\right)^{-1}$
5. Gauss-Markov: OLS is the best linear unbiased estimator of β (BLUE). If $\tilde{\beta}$ is a linear estimator,

$$
\mathbb{V}[\tilde{\boldsymbol{\beta}} \mid \mathbb{X}] \geq \mathbb{V}[\hat{\boldsymbol{\beta}} \mid \mathbb{X}]=\sigma^{2}\left(\mathbb{X}^{\prime} \mathbb{X}\right)^{-1}
$$

- For matrices, $\mathbf{A} \geq \mathbf{B}$ means that $\mathbf{A}-\mathbf{B}$ is positive semidefinite.

Linear CEF under homoskedasticity

- Under homoskedasticity, we have a few other finite-sample results:

3. Conditional sampling variance: $\mathbb{V}[\hat{\boldsymbol{\beta}} \mid \mathbb{X}]=\sigma^{2}\left(\mathcal{X}^{\prime} \mathcal{X}\right)^{-1}$
4. Unbiased variance estimator: $\mathbb{E}\left[\hat{V}^{0}[\hat{\boldsymbol{\beta}}] \mid \mathbf{X}\right]=\sigma^{2}\left(\mathcal{K}^{\prime} \mathcal{X}\right)^{-1}$
5. Gauss-Markov: OLS is the best linear unbiased estimator of β (BLUE). If $\tilde{\beta}$ is a linear estimator,

$$
V[\tilde{\boldsymbol{\beta}} \mid \mathbb{X}] \geq \mathbb{V}[\hat{\boldsymbol{\beta}} \mid \mathbb{X}]=\sigma^{2}\left(\mathbb{X}^{\prime} \mathbb{X}\right)^{-1}
$$

- For matrices, $\mathbf{A} \geq \mathbf{B}$ means that $\mathbf{A}-\mathbf{B}$ is positive semidefinite.
- A matrix \mathbf{C} is p.s.d. if $x^{\prime} \mathbf{C x} \geq 0$.

Linear CEF under homoskedasticity

- Under homoskedasticity, we have a few other finite-sample results:

3. Conditional sampling variance: $\mathbb{V}[\hat{\boldsymbol{\beta}} \mid \mathbb{X}]=\sigma^{2}\left(\mathcal{X}^{\prime} \mathcal{X}\right)^{-1}$
4. Unbiased variance estimator: $\mathbb{E}\left[\hat{\mathbb{V}}^{0}[\hat{\boldsymbol{\beta}}] \mid \mathbf{X}\right]=\sigma^{2}\left(\mathcal{K}^{\prime} \mathcal{X}\right)^{-1}$
5. Gauss-Markov: OLS is the best linear unbiased estimator of β (BLUE). If $\tilde{\beta}$ is a linear estimator,

$$
\mathbb{V}[\tilde{\boldsymbol{\beta}} \mid \mathbb{X}] \geq \mathbb{V}[\hat{\boldsymbol{\beta}} \mid \mathbb{X}]=\sigma^{2}\left(\mathbb{X}^{\prime} \mathbb{X}\right)^{-1}
$$

- For matrices, $\mathbf{A} \geq \mathbf{B}$ means that $\mathbf{A}-\mathbf{B}$ is positive semidefinite.
- A matrix \mathbf{C} is p.s.d. if $x^{\prime} \mathbf{C x} \geq 0$.
- Upshot: OLS will have the smaller SEs than any other linear estimator.

Normal regression model

- Most parametric: $Y \sim \mathcal{N}\left(\mathbf{X}^{\prime} \boldsymbol{\beta}, \sigma^{2}\right)$.

Normal regression model

- Most parametric: $Y \sim \mathcal{N}\left(\mathbf{X}^{\prime} \boldsymbol{\beta}, \sigma^{2}\right)$.
- Normal error model since $e=Y-\mathbf{X}^{\prime} \boldsymbol{\beta} \sim \mathcal{N}\left(0, \sigma^{2}\right)$.

Normal regression model

- Most parametric: $Y \sim \mathcal{N}\left(\mathbf{X}^{\prime} \boldsymbol{\beta}, \sigma^{2}\right)$.
- Normal error model since $e=Y-\mathbf{X}^{\prime} \boldsymbol{\beta} \sim \mathcal{N}\left(0, \sigma^{2}\right)$.
- Rarely believed, but allows for exact inference for all n.

Normal regression model

- Most parametric: $Y \sim \mathcal{N}\left(\mathbf{X}^{\prime} \boldsymbol{\beta}, \sigma^{2}\right)$.
- Normal error model since $e=Y-\mathbf{X}^{\prime} \boldsymbol{\beta} \sim \mathcal{N}\left(0, \sigma^{2}\right)$.
- Rarely believed, but allows for exact inference for all n.
- $\left(\hat{\beta}_{j}-\beta_{j}\right) / \widehat{\operatorname{se}}\left(\hat{\beta}_{j}\right)$ follows a t distribution with $n-k$ degrees of freedom.

Normal regression model

- Most parametric: $Y \sim \mathcal{N}\left(\mathbf{X}^{\prime} \boldsymbol{\beta}, \sigma^{2}\right)$.
- Normal error model since $e=Y-\mathbf{X}^{\prime} \boldsymbol{\beta} \sim \mathcal{N}\left(0, \sigma^{2}\right)$.
- Rarely believed, but allows for exact inference for all n.
- $\left(\hat{\beta}_{j}-\beta_{j}\right) / \widehat{\operatorname{se}}\left(\hat{\beta}_{j}\right)$ follows a t distribution with $n-k$ degrees of freedom.
- F statistics follows F distribution exactly rather than approximately.

Normal regression model

- Most parametric: $\boldsymbol{Y} \sim \mathcal{N}\left(\mathbf{X}^{\prime} \boldsymbol{\beta}, \sigma^{2}\right)$.
- Normal error model since $e=Y-\mathbf{X}^{\prime} \boldsymbol{\beta} \sim \mathcal{N}\left(0, \sigma^{2}\right)$.
- Rarely believed, but allows for exact inference for all n.
- $\left(\hat{\beta}_{j}-\beta_{j}\right) / \widehat{\operatorname{se}}\left(\hat{\beta}_{j}\right)$ follows a t distribution with $n-k$ degrees of freedom.
- F statistics follows F distribution exactly rather than approximately.
- Software often implicitly assumes this for p-values.

Normal regression model

- Most parametric: $Y \sim \mathcal{N}\left(\mathbf{X}^{\prime} \boldsymbol{\beta}, \sigma^{2}\right)$.
- Normal error model since $e=Y-\mathbf{X}^{\prime} \boldsymbol{\beta} \sim \mathcal{N}\left(0, \sigma^{2}\right)$.
- Rarely believed, but allows for exact inference for all n.
- $\left(\hat{\beta}_{j}-\beta_{j}\right) / \widehat{\operatorname{se}}\left(\hat{\beta}_{j}\right)$ follows a t distribution with $n-k$ degrees of freedom.
- F statistics follows F distribution exactly rather than approximately.
- Software often implicitly assumes this for p-values.
- With reasonable n, asymptotic normality has the same effect.

