14. Panel and Clustered Data

Spring 2023

Matthew Blackwell

Gov 2002 (Harvard)

Where are we? Where are we going?

- Focus up until now on iid data, but often doesn't hold.

Where are we? Where are we going?

- Focus up until now on iid data, but often doesn't hold.
- Panel and clustered data are two common non-iid data.

Where are we? Where are we going?

- Focus up until now on iid data, but often doesn't hold.
- Panel and clustered data are two common non-iid data.
- Panel data also holds hope for removing unmeasured heterogeneity.

1/ Panel Data

Is Democracy Good for the Poor?
Michael Ross University of California, Los Angeles

- Relationship between democracy and infant mortality?

Is Democracy Good for the Poor?

Michael Ross University of California, Los Angeles

- Relationship between democracy and infant mortality?
- Compare levels of democracy with levels of infant mortality, but...

Motivation

Is Democracy Good for the Poor?

Michael Ross University of California, Los Angeles

- Relationship between democracy and infant mortality?
- Compare levels of democracy with levels of infant mortality, but...
- Democratic countries are different from non-democracies in ways that we can't measure?

Motivation

Is Democracy Good for the Poor?

Michael Ross University of California, Los Angeles

- Relationship between democracy and infant mortality?
- Compare levels of democracy with levels of infant mortality, but...
- Democratic countries are different from non-democracies in ways that we can't measure?
- they are richer or developed earlier

Motivation

Is Democracy Good for the Poor?

Michael Ross University of California, Los Angeles

- Relationship between democracy and infant mortality?
- Compare levels of democracy with levels of infant mortality, but...
- Democratic countries are different from non-democracies in ways that we can't measure?
- they are richer or developed earlier
- provide benefits more efficiently

Motivation

Is Democracy Good for the Poor?

Michael Ross University of California, Los Angeles

- Relationship between democracy and infant mortality?
- Compare levels of democracy with levels of infant mortality, but...
- Democratic countries are different from non-democracies in ways that we can't measure?
- they are richer or developed earlier
- provide benefits more efficiently
- posses some cultural trait correlated with better health outcomes

Motivation

Is Democracy Good for the Poor?

Michael Ross University of California, Los Angeles

- Relationship between democracy and infant mortality?
- Compare levels of democracy with levels of infant mortality, but...
- Democratic countries are different from non-democracies in ways that we can't measure?
- they are richer or developed earlier
- provide benefits more efficiently
- posses some cultural trait correlated with better health outcomes
- If have data on countries over time, can we make any progress in spite of these problems?

Ross data

```
library(tidyverse)
library(haven)
ross <- read_dta("../assets/ross-democracy.dta")
ross <- ross |>
    filter(!is.na(kidmort_unicef), !is.na(democracy), !is.na(GDPcur)) |>
    group_by(id) |>
    filter(var(democracy, na.rm = TRUE) > 0)
head(ross[,c("cty_name", "year", "democracy", "infmort_unicef")])
```

\#\# \# A tibble: 6×4
\#\# cty_name year democracy infmort_unicef
\#\# <chr> <dbl> <dbl> <dbl>
\#\# 1 Albania $1990 \quad 0 \quad 36$
\#\# 2 Albania $1995 \quad 10$
\#\# 3 Argentina $1970 \quad 0 \quad 59$
\#\# 4 Argentina $1980 \quad 03$
\#\# 5 Argentina $1990 \quad 15$
\#\# 6 Argentina 199522

Notation for panel data

- Units, $i=1, \ldots, n$

Notation for panel data

- Units, $i=1, \ldots, n$
- Time, $t=1, \ldots, T$

Notation for panel data

- Units, $i=1, \ldots, n$
- Time, $t=1, \ldots, T$
- Time is a typical application, but applies to other groupings:

Notation for panel data

- Units, $i=1, \ldots, n$
- Time, $t=1, \ldots, T$
- Time is a typical application, but applies to other groupings:
- counties within states

Notation for panel data

- Units, $i=1, \ldots, n$
- Time, $t=1, \ldots, T$
- Time is a typical application, but applies to other groupings:
- counties within states
- states within countries

Notation for panel data

- Units, $i=1, \ldots, n$
- Time, $t=1, \ldots, T$
- Time is a typical application, but applies to other groupings:
- counties within states
- states within countries
- people within coutries, etc.

Notation for panel data

- Units, $i=1, \ldots, n$
- Time, $t=1, \ldots, T$
- Time is a typical application, but applies to other groupings:
- counties within states
- states within countries
- people within coutries, etc.
- Panel data: large n, relatively short T

Notation for panel data

- Units, $i=1, \ldots, n$
- Time, $t=1, \ldots, T$
- Time is a typical application, but applies to other groupings:
- counties within states
- states within countries
- people within coutries, etc.
- Panel data: large n, relatively short T
- Time series, cross-sectional (TSCS) data: smaller n, large T (a political science term, mostly)

Model

$$
Y_{i t}=\mathbf{X}_{i t}^{\prime} \boldsymbol{\beta}+c_{i}+u_{i t}
$$

- $\mathbf{X}_{i t}$ is a vector of covariates (possibly time-varying)

$$
Y_{i t}=\mathbf{X}_{i t}^{\prime} \boldsymbol{\beta}+c_{i}+u_{i t}
$$

- $\mathbf{X}_{i t}$ is a vector of covariates (possibly time-varying)
- c_{i} is an unobserved time-constant unit effect ("fixed effect")

$$
Y_{i t}=\mathbf{X}_{i t}^{\prime} \boldsymbol{\beta}+c_{i}+u_{i t}
$$

- $\mathbf{X}_{i t}$ is a vector of covariates (possibly time-varying)
- c_{i} is an unobserved time-constant unit effect ("fixed effect")
- Confusingly, we'll allow them to be random variables.

$$
Y_{i t}=\mathbf{X}_{i t}^{\prime} \boldsymbol{\beta}+c_{i}+u_{i t}
$$

- $\mathbf{X}_{i t}$ is a vector of covariates (possibly time-varying)
- c_{i} is an unobserved time-constant unit effect ("fixed effect")
- Confusingly, we'll allow them to be random variables.
- $u_{i t}$ are the unobserved time-varying "idiosyncratic" errors

$$
Y_{i t}=\mathbf{X}_{i t}^{\prime} \boldsymbol{\beta}+c_{i}+u_{i t}
$$

- $\mathbf{X}_{i t}$ is a vector of covariates (possibly time-varying)
- c_{i} is an unobserved time-constant unit effect ("fixed effect")
- Confusingly, we'll allow them to be random variables.
- $u_{i t}$ are the unobserved time-varying "idiosyncratic" errors
- $v_{i t}=c_{i}+u_{i t}$ is the combined unobserved error: $Y_{i t}=\mathbf{X}_{i t}^{\prime} \boldsymbol{\beta}+v_{i t}$

$$
Y_{i t}=\mathbf{X}_{i t}^{\prime} \boldsymbol{\beta}+c_{i}+u_{i t}
$$

- $\mathbf{X}_{i t}$ is a vector of covariates (possibly time-varying)
- c_{i} is an unobserved time-constant unit effect ("fixed effect")
- Confusingly, we'll allow them to be random variables.
- $u_{i t}$ are the unobserved time-varying "idiosyncratic" errors
- $v_{i t}=c_{i}+u_{i t}$ is the combined unobserved error: $Y_{i t}=\mathbf{X}_{i t}^{\prime} \boldsymbol{\beta}+v_{i t}$
- Assume that if we could measure c_{i}, we would have the correct CEF:

$$
\mathbb{E}\left[u_{i t} \mid \mathbf{X}_{i t}, c_{i}\right]=0 \quad \Longrightarrow \quad \mathbb{E}\left[Y_{i t} \mid \mathbf{X}_{i t}, c_{i}\right]=\mathbf{X}_{i t}^{\prime} \boldsymbol{\beta}+c_{i}
$$

- Pooled OLS: pool all observations into one regression
- Pooled OLS: pool all observations into one regression
- Treats all unit-periods (each $i t$) as an iid unit.
- Pooled OLS: pool all observations into one regression
- Treats all unit-periods (each $i t$) as an iid unit.
- Has two problems:
- Pooled OLS: pool all observations into one regression
- Treats all unit-periods (each $i t$) as an iid unit.
- Has two problems:

1. Variance is probably wrong if there is dependence over time

- Pooled OLS: pool all observations into one regression
- Treats all unit-periods (each $i t$) as an iid unit.
- Has two problems:

1. Variance is probably wrong if there is dependence over time
2. Errors might be correlated with the covariates

- Pooled OLS: pool all observations into one regression
- Treats all unit-periods (each $i t$) as an iid unit.
- Has two problems:

1. Variance is probably wrong if there is dependence over time
2. Errors might be correlated with the covariates

- Both problems arise out of ignoring the unmeasured heterogeneity inherent in c_{i}

Pooled OLS with Ross data

```
library(lmtest)
library(sandwich)
pooled.mod <- lm(log(kidmort_unicef) ~ democracy + log(GDPcur),
    data = ross)
coeftest(pooled.mod, vcov = vcovHC)
```

```
##
## t test of coefficients:
##
\begin{tabular}{lrrrrr} 
\#\# & Estimate Std. Error t value & \(\operatorname{Pr}(>\mid \mathrm{t\mid})\) \\
\#\# (Intercept) & 10.3338 & 0.6279 & 16.46 & \(<2 \mathrm{e}-16\) & *** \\
\#\# democracy & -0.5639 & 0.1135 & -4.97 & \(1.3 \mathrm{e}-06\) & *** \\
\#\# log(GDPcur) & -0.2486 & 0.0287 & -8.66 & \(7.7 e-16\) & ***
\end{tabular}
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Unmeasured heterogeneity

- Since $u_{i t}$ is the CEF error, $\mathbf{X}_{i t}$ are uncorrelated with it: $\mathbb{E}\left[\mathbf{X}_{i t} u_{i t}\right]=0$.

Unmeasured heterogeneity

- Since $u_{i t}$ is the CEF error, $\mathbf{X}_{i t}$ are uncorrelated with it: $\mathbb{E}\left[\mathbf{X}_{i t} u_{i t}\right]=0$.
- If unit-effect c_{i} is uncorrelated with $\mathbf{X}_{i t}$, no problem for consistency!

Unmeasured heterogeneity

- Since $u_{i t}$ is the CEF error, $\mathbf{X}_{i t}$ are uncorrelated with it: $\mathbb{E}\left[\mathbf{X}_{i t} u_{i t}\right]=0$.
- If unit-effect c_{i} is uncorrelated with $\mathbf{X}_{i t}$, no problem for consistency!

$$
\cdots \rightsquigarrow \mathbb{E}\left[\mathbf{X}_{i t} v_{i t}\right]=\mathbb{E}\left[\mathbf{X}_{i t}\left(c_{i}+u_{i t}\right)\right]=0
$$

Unmeasured heterogeneity

- Since $u_{i t}$ is the CEF error, $\mathbf{X}_{i t}$ are uncorrelated with it: $\mathbb{E}\left[\mathbf{X}_{i t} u_{i t}\right]=0$.
- If unit-effect c_{i} is uncorrelated with $\mathbf{X}_{i t}$, no problem for consistency!
- $\rightsquigarrow \mathbb{E}\left[\mathbf{X}_{i t} v_{i t}\right]=\mathbb{E}\left[\mathbf{X}_{i t}\left(c_{i}+u_{i t}\right)\right]=0$.
- Just run pooled OLS (but worry about SEs).

Unmeasured heterogeneity

- Since $u_{i t}$ is the CEF error, $\mathbf{X}_{i t}$ are uncorrelated with it: $\mathbb{E}\left[\mathbf{X}_{i t} u_{i t}\right]=0$.
- If unit-effect c_{i} is uncorrelated with $\mathbf{X}_{i t}$, no problem for consistency!
- $\rightsquigarrow \mathbb{E}\left[\mathbf{X}_{i t} v_{i t}\right]=\mathbb{E}\left[\mathbf{X}_{i t}\left(c_{i}+u_{i t}\right)\right]=0$.
- Just run pooled OLS (but worry about SEs).
- But c_{i} often correlated with $\mathbf{X}_{i t}$ so that $\mathbb{E}\left[\mathbf{X}_{i t} c_{i}\right] \neq 0$.

Unmeasured heterogeneity

- Since $u_{i t}$ is the CEF error, $\mathbf{X}_{i t}$ are uncorrelated with it: $\mathbb{E}\left[\mathbf{X}_{i t} u_{i t}\right]=0$.
- If unit-effect c_{i} is uncorrelated with $\mathbf{X}_{i t}$, no problem for consistency!
- $\rightsquigarrow \mathbb{E}\left[\mathbf{X}_{i t} v_{i t}\right]=\mathbb{E}\left[\mathbf{X}_{i t}\left(c_{i}+u_{i t}\right)\right]=0$.
- Just run pooled OLS (but worry about SEs).
- But c_{i} often correlated with $\mathbf{X}_{i t}$ so that $\mathbb{E}\left[\mathbf{X}_{i t} c_{i}\right] \neq 0$.
- Example: democratic institutions correlated with unmeasured aspects of health outcomes, like quality of health system or a lack of ethnic conflict.

Unmeasured heterogeneity

- Since $u_{i t}$ is the CEF error, $\mathbf{X}_{i t}$ are uncorrelated with it: $\mathbb{E}\left[\mathbf{X}_{i t} u_{i t}\right]=0$.
- If unit-effect c_{i} is uncorrelated with $\mathbf{X}_{i t}$, no problem for consistency!
- $\rightsquigarrow \mathbb{E}\left[\mathbf{X}_{i t} v_{i t}\right]=\mathbb{E}\left[\mathbf{X}_{i t}\left(c_{i}+u_{i t}\right)\right]=0$.
- Just run pooled OLS (but worry about SEs).
- But c_{i} often correlated with $\mathbf{X}_{i t}$ so that $\mathbb{E}\left[\mathbf{X}_{i t} c_{i}\right] \neq 0$.
- Example: democratic institutions correlated with unmeasured aspects of health outcomes, like quality of health system or a lack of ethnic conflict.
- Ignore the heterogeneity \rightsquigarrow correlation between the combined error and the independent variables.

Unmeasured heterogeneity

- Since $u_{i t}$ is the CEF error, $\mathbf{X}_{i t}$ are uncorrelated with it: $\mathbb{E}\left[\mathbf{X}_{i t} u_{i t}\right]=0$.
- If unit-effect c_{i} is uncorrelated with $\mathbf{X}_{i t}$, no problem for consistency!
- $\rightsquigarrow \mathbb{E}\left[\mathbf{X}_{i t} v_{i t}\right]=\mathbb{E}\left[\mathbf{X}_{i t}\left(c_{i}+u_{i t}\right)\right]=0$.
- Just run pooled OLS (but worry about SEs).
- But c_{i} often correlated with $\mathbf{X}_{i t}$ so that $\mathbb{E}\left[\mathbf{X}_{i t} c_{i}\right] \neq 0$.
- Example: democratic institutions correlated with unmeasured aspects of health outcomes, like quality of health system or a lack of ethnic conflict.
- Ignore the heterogeneity \rightsquigarrow correlation between the combined error and the independent variables.
- $\rightsquigarrow \mathbb{E}\left[\mathbf{X}_{i t} v_{i t}\right]=\mathbb{E}\left[\mathbf{X}_{i t}\left(c_{i}+u_{i t}\right)\right]=\mathbb{E}\left[\mathbf{X}_{i t} c_{i}\right] \neq 0$

Unmeasured heterogeneity

- Since $u_{i t}$ is the CEF error, $\mathbf{X}_{i t}$ are uncorrelated with it: $\mathbb{E}\left[\mathbf{X}_{i t} u_{i t}\right]=0$.
- If unit-effect c_{i} is uncorrelated with $\mathbf{X}_{i t}$, no problem for consistency!
- $\rightsquigarrow \mathbb{E}\left[\mathbf{X}_{i t} v_{i t}\right]=\mathbb{E}\left[\mathbf{X}_{i t}\left(c_{i}+u_{i t}\right)\right]=0$.
- Just run pooled OLS (but worry about SEs).
- But c_{i} often correlated with $\mathbf{X}_{i t}$ so that $\mathbb{E}\left[\mathbf{X}_{i t} c_{i}\right] \neq 0$.
- Example: democratic institutions correlated with unmeasured aspects of health outcomes, like quality of health system or a lack of ethnic conflict.
- Ignore the heterogeneity \rightsquigarrow correlation between the combined error and the independent variables.

$$
\cdots \rightsquigarrow \mathbb{E}\left[\mathbf{X}_{i t} v_{i t}\right]=\mathbb{E}\left[\mathbf{X}_{i t}\left(c_{i}+u_{i t}\right)\right]=\mathbb{E}\left[\mathbf{X}_{i t} c_{i}\right] \neq 0
$$

- Pooled OLS will be inconsistent for the CEF parameters, $\boldsymbol{\beta}$.

Strict exogeneity

- Panel data allows us to estimate $\boldsymbol{\beta}$ even in this setting

Strict exogeneity

- Panel data allows us to estimate $\boldsymbol{\beta}$ even in this setting
- Two approaches that leverage repeated observations:

Strict exogeneity

- Panel data allows us to estimate $\boldsymbol{\beta}$ even in this setting
- Two approaches that leverage repeated observations:
- Differencing look at changes over time.

Strict exogeneity

- Panel data allows us to estimate $\boldsymbol{\beta}$ even in this setting
- Two approaches that leverage repeated observations:
- Differencing look at changes over time.
- Fixed effects look at relationships within units.

2/ First Differencing
Methods

First differencing

- One approach: compare changes over time

First differencing

- One approach: compare changes over time
- Intuitively, time-constant heterogeneity can't affect changes over time.

First differencing

- One approach: compare changes over time
- Intuitively, time-constant heterogeneity can't affect changes over time.
- Two time periods:

$$
\begin{aligned}
& Y_{i 1}=\mathbf{X}_{i 1}^{\prime} \boldsymbol{\beta}+c_{i}+u_{i 1} \\
& Y_{i 2}=\mathbf{X}_{i 2}^{\prime} \boldsymbol{\beta}+c_{i}+u_{i 2}
\end{aligned}
$$

First differencing

- One approach: compare changes over time
- Intuitively, time-constant heterogeneity can't affect changes over time.
- Two time periods:

$$
\begin{aligned}
& Y_{i 1}=\mathbf{X}_{i 1}^{\prime} \boldsymbol{\beta}+c_{i}+u_{i 1} \\
& Y_{i 2}=\mathbf{X}_{i 2}^{\prime} \boldsymbol{\beta}+c_{i}+u_{i 2}
\end{aligned}
$$

- Look at the change in Y over time:

$$
\Delta Y_{i}=Y_{i 2}-Y_{i 1}
$$

First differencing

- One approach: compare changes over time
- Intuitively, time-constant heterogeneity can't affect changes over time.
- Two time periods:

$$
\begin{aligned}
& Y_{i 1}=\mathbf{X}_{i 1}^{\prime} \boldsymbol{\beta}+c_{i}+u_{i 1} \\
& Y_{i 2}=\mathbf{X}_{i 2}^{\prime} \boldsymbol{\beta}+c_{i}+u_{i 2}
\end{aligned}
$$

- Look at the change in Y over time:

$$
\begin{aligned}
\Delta Y_{i} & =Y_{i 2}-Y_{i 1} \\
& =\left(\mathbf{X}_{i 2}^{\prime} \boldsymbol{\beta}+c_{i}+u_{i 2}\right)-\left(\mathbf{X}_{i 1}^{\prime} \boldsymbol{\beta}+c_{i}+u_{i 1}\right)
\end{aligned}
$$

First differencing

- One approach: compare changes over time
- Intuitively, time-constant heterogeneity can't affect changes over time.
- Two time periods:

$$
\begin{aligned}
& Y_{i 1}=\mathbf{X}_{i 1}^{\prime} \boldsymbol{\beta}+c_{i}+u_{i 1} \\
& Y_{i 2}=\mathbf{X}_{i 2}^{\prime} \boldsymbol{\beta}+c_{i}+u_{i 2}
\end{aligned}
$$

- Look at the change in Y over time:

$$
\begin{aligned}
\Delta Y_{i} & =Y_{i 2}-Y_{i 1} \\
& =\left(\mathbf{X}_{i 2}^{\prime} \boldsymbol{\beta}+c_{i}+u_{i 2}\right)-\left(\mathbf{X}_{i 1}^{\prime} \boldsymbol{\beta}+c_{i}+u_{i 1}\right) \\
& =\left(\mathbf{X}_{i 2}^{\prime}-\mathbf{X}_{i 1}^{\prime}\right) \boldsymbol{\beta}+\left(c_{i}-c_{i}\right)+\left(u_{i 2}-u_{i 1}\right)
\end{aligned}
$$

First differencing

- One approach: compare changes over time
- Intuitively, time-constant heterogeneity can't affect changes over time.
- Two time periods:

$$
\begin{aligned}
& Y_{i 1}=\mathbf{X}_{i 1}^{\prime} \boldsymbol{\beta}+c_{i}+u_{i 1} \\
& Y_{i 2}=\mathbf{X}_{i 2}^{\prime} \boldsymbol{\beta}+c_{i}+u_{i 2}
\end{aligned}
$$

- Look at the change in Y over time:

$$
\begin{aligned}
\Delta Y_{i} & =Y_{i 2}-Y_{i 1} \\
& =\left(\mathbf{X}_{i 2}^{\prime} \boldsymbol{\beta}+c_{i}+u_{i 2}\right)-\left(\mathbf{X}_{i 1}^{\prime} \boldsymbol{\beta}+c_{i}+u_{i 1}\right) \\
& =\left(\mathbf{X}_{i 2}^{\prime}-\mathbf{X}_{i 1}^{\prime}\right) \boldsymbol{\beta}+\left(c_{i}-c_{i}\right)+\left(u_{i 2}-u_{i 1}\right) \\
& =\Delta \mathbf{X}_{i}^{\prime} \boldsymbol{\beta}+\Delta u_{i}
\end{aligned}
$$

First differences model

$$
\Delta Y_{i}=\Delta \mathbf{X}_{i}^{\prime} \boldsymbol{\beta}+\Delta u_{i}
$$

- Coefficient on the levels $\mathbf{X}_{i t}=$ the coefficient on the changes $\Delta \mathbf{X}_{i}$

First differences model

$$
\Delta Y_{i}=\Delta \mathbf{X}_{i}^{\prime} \boldsymbol{\beta}+\Delta u_{i}
$$

- Coefficient on the levels $\mathbf{X}_{i t}=$ the coefficient on the changes $\Delta \mathbf{X}_{i}$
- Time-constant unobserved heterogeneity c_{i} drops out.

First differences model

$$
\Delta Y_{i}=\Delta \mathbf{X}_{i}^{\prime} \boldsymbol{\beta}+\Delta u_{i}
$$

- Coefficient on the levels $\mathbf{X}_{i t}$ = the coefficient on the changes $\Delta \mathbf{X}_{i}$
- Time-constant unobserved heterogeneity c_{i} drops out.
- For consistency of OLS on the differences, we need $\mathbb{E}\left[\Delta \mathbf{X}_{i} \Delta u_{i}\right]=0$.

$$
\mathbb{E}\left[\left(\mathbf{X}_{i 2}-\mathbf{X}_{i 1}\right)\left(u_{i 2}-u_{i 1}\right)\right]=\mathbb{E}\left[\mathbf{X}_{2} u_{2}\right]+\mathbb{E}\left[\mathbf{X}_{1} u_{1}\right]-\mathbb{E}\left[\mathbf{X}_{1} u_{2}\right]-\mathbb{E}\left[\mathbf{X}_{2} u_{1}\right]=0
$$

First differences model

$$
\Delta Y_{i}=\Delta \mathbf{X}_{i}^{\prime} \boldsymbol{\beta}+\Delta u_{i}
$$

- Coefficient on the levels $\mathbf{X}_{i t}$ = the coefficient on the changes $\Delta \mathbf{X}_{i}$
- Time-constant unobserved heterogeneity c_{i} drops out.
- For consistency of OLS on the differences, we need $\mathbb{E}\left[\Delta \mathbf{X}_{i} \Delta u_{i}\right]=0$.

$$
\mathbb{E}\left[\left(\mathbf{X}_{i 2}-\mathbf{X}_{i 1}\right)\left(u_{i 2}-u_{i 1}\right)\right]=\mathbb{E}\left[\mathbf{X}_{2} u_{2}\right]+\mathbb{E}\left[\mathbf{X}_{1} u_{1}\right]-\mathbb{E}\left[\mathbf{X}_{1} u_{2}\right]-\mathbb{E}\left[\mathbf{X}_{2} u_{1}\right]=0
$$

- First two are 0 since we assume the CEF is correctly specified up to c_{i}

First differences model

$$
\Delta Y_{i}=\Delta \mathbf{X}_{i}^{\prime} \boldsymbol{\beta}+\Delta u_{i}
$$

- Coefficient on the levels $\mathbf{X}_{i t}=$ the coefficient on the changes $\Delta \mathbf{X}_{i}$
- Time-constant unobserved heterogeneity c_{i} drops out.
- For consistency of OLS on the differences, we need $\mathbb{E}\left[\Delta \mathbf{X}_{i} \Delta u_{i}\right]=0$.

$$
\mathbb{E}\left[\left(\mathbf{X}_{i 2}-\mathbf{X}_{i 1}\right)\left(u_{i 2}-u_{i 1}\right)\right]=\mathbb{E}\left[\mathbf{X}_{2} u_{2}\right]+\mathbb{E}\left[\mathbf{X}_{1} u_{1}\right]-\mathbb{E}\left[\mathbf{X}_{1} u_{2}\right]-\mathbb{E}\left[\mathbf{X}_{2} u_{1}\right]=0
$$

- First two are 0 since we assume the CEF is correctly specified up to c_{i}
- $\mathbb{E}\left[\mathbf{X}_{1} u_{2}\right]$ and $\mathbb{E}\left[\mathbf{X}_{2} u_{1}\right]$ are additional assumptions: no feedback between outcome and covariates

First differences model

$$
\Delta Y_{i}=\Delta \mathbf{X}_{i}^{\prime} \boldsymbol{\beta}+\Delta u_{i}
$$

- Coefficient on the levels $\mathbf{X}_{i t}=$ the coefficient on the changes $\Delta \mathbf{X}_{i}$
- Time-constant unobserved heterogeneity c_{i} drops out.
- For consistency of OLS on the differences, we need $\mathbb{E}\left[\Delta \mathbf{X}_{i} \Delta u_{i}\right]=0$.

$$
\mathbb{E}\left[\left(\mathbf{X}_{i 2}-\mathbf{X}_{i 1}\right)\left(u_{i 2}-u_{i 1}\right)\right]=\mathbb{E}\left[\mathbf{X}_{2} u_{2}\right]+\mathbb{E}\left[\mathbf{X}_{1} u_{1}\right]-\mathbb{E}\left[\mathbf{X}_{1} u_{2}\right]-\mathbb{E}\left[\mathbf{X}_{2} u_{1}\right]=0
$$

- First two are 0 since we assume the CEF is correctly specified up to c_{i}
- $\mathbb{E}\left[\mathbf{X}_{1} u_{2}\right]$ and $\mathbb{E}\left[\mathbf{X}_{2} u_{1}\right]$ are additional assumptions: no feedback between outcome and covariates
- Invertibility of $\mathbb{E}\left[\Delta \mathbf{X}_{i t} \Delta \mathbf{X}_{i t}^{\prime}\right]$ requires $\mathbf{X}_{i t}$ to vary over time for someone

First differences model

$$
\Delta Y_{i}=\Delta \mathbf{X}_{i}^{\prime} \boldsymbol{\beta}+\Delta u_{i}
$$

- Coefficient on the levels $\mathbf{X}_{i t}=$ the coefficient on the changes $\Delta \mathbf{X}_{i}$
- Time-constant unobserved heterogeneity c_{i} drops out.
- For consistency of OLS on the differences, we need $\mathbb{E}\left[\Delta \mathbf{X}_{i} \Delta u_{i}\right]=0$.

$$
\mathbb{E}\left[\left(\mathbf{X}_{i 2}-\mathbf{X}_{i 1}\right)\left(u_{i 2}-u_{i 1}\right)\right]=\mathbb{E}\left[\mathbf{X}_{2} u_{2}\right]+\mathbb{E}\left[\mathbf{X}_{1} u_{1}\right]-\mathbb{E}\left[\mathbf{X}_{1} u_{2}\right]-\mathbb{E}\left[\mathbf{X}_{2} u_{1}\right]=0
$$

- First two are 0 since we assume the CEF is correctly specified up to c_{i}
- $\mathbb{E}\left[\mathbf{X}_{1} u_{2}\right]$ and $\mathbb{E}\left[\mathbf{X}_{2} u_{1}\right]$ are additional assumptions: no feedback between outcome and covariates
- Invertibility of $\mathbb{E}\left[\Delta \mathbf{X}_{i t} \Delta \mathbf{X}_{i t}^{\prime}\right]$ requires $\mathbf{X}_{i t}$ to vary over time for someone
- Under these assumptions, pooled OLS on the differences is consistent.

3/ Fixed Effects Methods

Fixed effects models

- Fixed effects model: another way to remove unmeasured heterogeneity

Fixed effects models

- Fixed effects model: another way to remove unmeasured heterogeneity
- Focuses on within-unit comparisons: changes in $Y_{i t}$ and $X_{i t}$ relative to their within-group means

Fixed effects models

- Fixed effects model: another way to remove unmeasured heterogeneity
- Focuses on within-unit comparisons: changes in $Y_{i t}$ and $X_{i t}$ relative to their within-group means
- First note that taking the average of the Y 's over time for a given unit leaves us with a very similar model:

$$
\bar{Y}_{i}=\frac{1}{T} \sum_{t=1}^{T}\left[\mathbf{X}_{i t}^{\prime} \beta+c_{i}+u_{i t}\right]
$$

Fixed effects models

- Fixed effects model: another way to remove unmeasured heterogeneity
- Focuses on within-unit comparisons: changes in $Y_{i t}$ and $X_{i t}$ relative to their within-group means
- First note that taking the average of the Y 's over time for a given unit leaves us with a very similar model:

$$
\begin{aligned}
\bar{Y}_{i} & =\frac{1}{T} \sum_{t=1}^{T}\left[\mathbf{X}_{i t}^{\prime} \boldsymbol{\beta}+c_{i}+u_{i t}\right] \\
& =\left(\frac{1}{T} \sum_{t=1}^{T} \mathbf{X}_{i t}^{\prime}\right) \boldsymbol{\beta}+\frac{1}{T} \sum_{t=1}^{T} c_{i}+\frac{1}{T} \sum_{t=1}^{T} u_{i t}
\end{aligned}
$$

Fixed effects models

- Fixed effects model: another way to remove unmeasured heterogeneity
- Focuses on within-unit comparisons: changes in $Y_{i t}$ and $X_{i t}$ relative to their within-group means
- First note that taking the average of the Y 's over time for a given unit leaves us with a very similar model:

$$
\begin{aligned}
\bar{Y}_{i} & =\frac{1}{T} \sum_{t=1}^{T}\left[\mathbf{X}_{i t}^{\prime} \boldsymbol{\beta}+c_{i}+u_{i t}\right] \\
& =\left(\frac{1}{T} \sum_{t=1}^{T} \mathbf{X}_{i t}^{\prime}\right) \boldsymbol{\beta}+\frac{1}{T} \sum_{t=1}^{T} c_{i}+\frac{1}{T} \sum_{t=1}^{T} u_{i t} \\
& =\overline{\mathbf{X}}_{i}^{\prime} \boldsymbol{\beta}+c_{i}+\bar{u}_{i}
\end{aligned}
$$

Fixed effects models

- Fixed effects model: another way to remove unmeasured heterogeneity
- Focuses on within-unit comparisons: changes in $Y_{i t}$ and $X_{i t}$ relative to their within-group means
- First note that taking the average of the Y 's over time for a given unit leaves us with a very similar model:

$$
\begin{aligned}
\bar{Y}_{i} & =\frac{1}{T} \sum_{t=1}^{T}\left[\mathbf{X}_{i t}^{\prime} \boldsymbol{\beta}+c_{i}+u_{i t}\right] \\
& =\left(\frac{1}{T} \sum_{t=1}^{T} \mathbf{X}_{i t}^{\prime}\right) \boldsymbol{\beta}+\frac{1}{T} \sum_{t=1}^{T} c_{i}+\frac{1}{T} \sum_{t=1}^{T} u_{i t} \\
& =\overline{\mathbf{X}}_{i}^{\prime} \boldsymbol{\beta}+c_{i}+\bar{u}_{i}
\end{aligned}
$$

- Key fact: mean of the time-constant c_{i} is just c_{i}

Fixed effects models

- Fixed effects model: another way to remove unmeasured heterogeneity
- Focuses on within-unit comparisons: changes in $Y_{i t}$ and $X_{i t}$ relative to their within-group means
- First note that taking the average of the Y 's over time for a given unit leaves us with a very similar model:

$$
\begin{aligned}
\bar{Y}_{i} & =\frac{1}{T} \sum_{t=1}^{T}\left[\mathbf{X}_{i t}^{\prime} \boldsymbol{\beta}+c_{i}+u_{i t}\right] \\
& =\left(\frac{1}{T} \sum_{t=1}^{T} \mathbf{X}_{i t}^{\prime}\right) \boldsymbol{\beta}+\frac{1}{T} \sum_{t=1}^{T} c_{i}+\frac{1}{T} \sum_{t=1}^{T} u_{i t} \\
& =\overline{\mathbf{X}}_{i}^{\prime} \boldsymbol{\beta}+c_{i}+\bar{u}_{i}
\end{aligned}
$$

- Key fact: mean of the time-constant c_{i} is just c_{i}
- This regression is sometimes called the "between regression"

Within transformation

- Fixed effect or within transformation:

$$
\left(Y_{i t}-\bar{Y}_{i}\right)=\left(\mathbf{X}_{i t}^{\prime}-\overline{\mathbf{X}}_{i}^{\prime}\right) \boldsymbol{\beta}+\left(u_{i t}-\bar{u}_{i}\right)
$$

Within transformation

- Fixed effect or within transformation:

$$
\left(Y_{i t}-\bar{Y}_{i}\right)=\left(\mathbf{X}_{i t}^{\prime}-\overline{\mathbf{X}}_{i}^{\prime}\right) \boldsymbol{\beta}+\left(u_{i t}-\bar{u}_{i}\right)
$$

- Center every covariate and the outcome at its within-unit mean.

Within transformation

- Fixed effect or within transformation:

$$
\left(Y_{i t}-\bar{Y}_{i}\right)=\left(\mathbf{X}_{i t}^{\prime}-\overline{\mathbf{X}}_{i}^{\prime}\right) \boldsymbol{\beta}+\left(u_{i t}-\bar{u}_{i}\right)
$$

- Center every covariate and the outcome at its within-unit mean.
- c_{i} drops out because its within-unit mean is itself (time-constant).

Within transformation

- Fixed effect or within transformation:

$$
\left(Y_{i t}-\bar{Y}_{i}\right)=\left(\mathbf{X}_{i t}^{\prime}-\overline{\mathbf{X}}_{i}^{\prime}\right) \boldsymbol{\beta}+\left(u_{i t}-\bar{u}_{i}\right)
$$

- Center every covariate and the outcome at its within-unit mean.
- c_{i} drops out because its within-unit mean is itself (time-constant).
- If we write $\ddot{Y}_{i t}=Y_{i t}-\bar{Y}_{i}$, then we can write this more compactly as:

$$
\ddot{Y}_{i t}=\ddot{\mathbf{X}}_{i t}^{\prime} \boldsymbol{\beta}+\ddot{u}_{i t}
$$

Fixed effects with Ross data

```
library(fixest)
fe.mod <- fixest::feols(
    log(kidmort_unicef) ~ democracy + log(GDPcur) | id,
    data = ross, vcov = "hetero")
summary(fe.mod)
```

\#\# OLS estimation, Dep. Var.: log(kidmort_unicef)
\#\# Observations: 237
\#\# Fixed-effects: id: 53
\#\# Standard-errors: Heteroskedasticity-robust
\#\# Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
\#\# democracy -0.156 0.0314 -4.97 0.0000015379 ***
\#\# $\log (G D P c u r)-0.354 \quad 0.0252-14.03<2.2 e-16$ ***
\#\# ---
\#\# Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
\#\# RMSE: 0.18124 Adj. R2: 0.95396
\#\#
Within R2: 0.711842

Strict exogeneity

$$
\ddot{Y}_{i t}=\ddot{\mathbf{X}}_{i t}^{\prime} \beta+\ddot{u}_{i t}
$$

- To use OLS on demeaned data, need $\mathbb{E}\left[\ddot{\mathbf{X}}_{i t} \ddot{u}_{i t}\right]=0$.

Strict exogeneity

$$
\ddot{Y}_{i t}=\ddot{\mathbf{X}}_{i t}^{\prime} \beta+\ddot{u}_{i t}
$$

- To use OLS on demeaned data, need $\mathbb{E}\left[\ddot{\mathbf{X}}_{i t} \ddot{u}_{i t}\right]=0$.
- This is not implied by $\mathbb{E}\left[u_{i t} \mid \mathbf{X}_{i t}, c_{i}\right]=0$.

Strict exogeneity

$$
\ddot{Y}_{i t}=\ddot{\mathbf{X}}_{i t}^{\prime} \beta+\ddot{u}_{i t}
$$

- To use OLS on demeaned data, need $\mathbb{E}\left[\ddot{\mathbf{X}}_{i t} \ddot{u}_{i t}\right]=0$.
- This is not implied by $\mathbb{E}\left[u_{i t} \mid \mathbf{X}_{i t}, c_{i}\right]=0$.
- Only implies $u_{i t}$ will be uncorrelated with $\mathbf{X}_{i t}$.

Strict exogeneity

$$
\ddot{Y}_{i t}=\ddot{\mathbf{X}}_{i t}^{\prime} \beta+\ddot{u}_{i t}
$$

- To use OLS on demeaned data, need $\mathbb{E}\left[\ddot{\mathbf{X}}_{i t} \ddot{u}_{i t}\right]=0$.
- This is not implied by $\mathbb{E}\left[u_{i t} \mid \mathbf{X}_{i t}, c_{i}\right]=0$.
- Only implies $u_{i t}$ will be uncorrelated with $\mathbf{X}_{i t}$.
- Like with differencing, need $u_{i t}$ to be uncorrelated with all $\mathbf{X}_{\text {is }}$

Strict exogeneity

$$
\ddot{Y}_{i t}=\ddot{\mathbf{X}}_{i t}^{\prime} \beta+\ddot{u}_{i t}
$$

- To use OLS on demeaned data, need $\mathbb{E}\left[\ddot{\mathbf{X}}_{i t} \ddot{u}_{i t}\right]=0$.
- This is not implied by $\mathbb{E}\left[u_{i t} \mid \mathbf{X}_{i t}, c_{i}\right]=0$.
- Only implies $u_{i t}$ will be uncorrelated with $\mathbf{X}_{i t}$.
- Like with differencing, need $u_{i t}$ to be uncorrelated with all $\mathbf{X}_{\text {is }}$
- Why? $\ddot{u}_{i t}$ and $\ddot{\mathbf{X}}_{i t}$ are functions of errors/covariates in all time periods.

Strict exogeneity

$$
\ddot{Y}_{i t}=\ddot{\mathbf{X}}_{i t}^{\prime} \beta+\ddot{u}_{i t}
$$

- To use OLS on demeaned data, need $\mathbb{E}\left[\ddot{\mathbf{X}}_{i t} \ddot{u}_{i t}\right]=0$.
- This is not implied by $\mathbb{E}\left[u_{i t} \mid \mathbf{X}_{i t}, c_{i}\right]=0$.
- Only implies $u_{i t}$ will be uncorrelated with $\mathbf{X}_{i t}$.
- Like with differencing, need $u_{i t}$ to be uncorrelated with all $\mathbf{X}_{\text {is }}$
- Why? $\ddot{u}_{i t}$ and $\ddot{\mathbf{X}}_{i t}$ are functions of errors/covariates in all time periods.
- Key assumption is strict exogeneity:

$$
\mathbb{E}\left[u_{i t} \mid \mathbf{X}_{i 1}, \mathbf{X}_{i 2}, \ldots, \mathbf{X}_{i T}, c_{i}\right]=0
$$

Strict exogeneity

$$
\ddot{Y}_{i t}=\ddot{\mathbf{X}}_{i t}^{\prime} \beta+\ddot{u}_{i t}
$$

- To use OLS on demeaned data, need $\mathbb{E}\left[\ddot{\mathbf{X}}_{i t} \ddot{u}_{i t}\right]=0$.
- This is not implied by $\mathbb{E}\left[u_{i t} \mid \mathbf{X}_{i t}, c_{i}\right]=0$.
- Only implies $u_{i t}$ will be uncorrelated with $\mathbf{X}_{i t}$.
- Like with differencing, need $u_{i t}$ to be uncorrelated with all $\mathbf{X}_{\text {is }}$
- Why? $\ddot{u}_{i t}$ and $\ddot{\mathbf{X}}_{i t}$ are functions of errors/covariates in all time periods.
- Key assumption is strict exogeneity:

$$
\mathbb{E}\left[u_{i t} \mid \mathbf{X}_{i 1}, \mathbf{X}_{i 2}, \ldots, \mathbf{X}_{i T}, c_{i}\right]=0
$$

- $u_{i t}$ uncorrelated with all covariates for unit i at any point in time.

Strict exogeneity

$$
\ddot{Y}_{i t}=\ddot{\mathbf{X}}_{i t}^{\prime} \beta+\ddot{u}_{i t}
$$

- To use OLS on demeaned data, need $\mathbb{E}\left[\ddot{\mathbf{X}}_{i t} \ddot{u}_{i t}\right]=0$.
- This is not implied by $\mathbb{E}\left[u_{i t} \mid \mathbf{X}_{i t}, c_{i}\right]=0$.
- Only implies $u_{i t}$ will be uncorrelated with $\mathbf{X}_{i t}$.
- Like with differencing, need $u_{i t}$ to be uncorrelated with all $\mathbf{X}_{\text {is }}$
- Why? $\ddot{u}_{i t}$ and $\ddot{\mathbf{X}}_{i t}$ are functions of errors/covariates in all time periods.
- Key assumption is strict exogeneity:

$$
\mathbb{E}\left[u_{i t} \mid \mathbf{X}_{i 1}, \mathbf{X}_{i 2}, \ldots, \mathbf{X}_{i T}, c_{i}\right]=0
$$

- $u_{i t}$ uncorrelated with all covariates for unit i at any point in time.
- Rules out lagged dependent variables, since $Y_{i, t-1}$ is a function of $u_{i, t-1}$.

Fixed effects and time-invariant covariates

-What if there is a covariate that doesn't vary over time?

Fixed effects and time-invariant covariates

-What if there is a covariate that doesn't vary over time?

- $\rightsquigarrow X_{i t}=\bar{X}_{i}$ and $\ddot{X}_{i t}=0$ for all periods t.

Fixed effects and time-invariant covariates

- What if there is a covariate that doesn't vary over time?
- $\rightsquigarrow X_{i t}=\bar{X}_{i}$ and $\ddot{X}_{i t}=0$ for all periods t.
- If $\ddot{X}_{i t}=0$ for all i and t, violates invertibility.

Fixed effects and time-invariant covariates

- What if there is a covariate that doesn't vary over time?
- $\rightsquigarrow X_{i t}=\bar{X}_{i}$ and $\ddot{X}_{i t}=0$ for all periods t.
- If $\ddot{X}_{i t}=0$ for all i and t, violates invertibility.
- R/Stata and the like will drop it from the regression.

Fixed effects and time-invariant covariates

- What if there is a covariate that doesn't vary over time?
- $\rightsquigarrow X_{i t}=\bar{X}_{i}$ and $\ddot{X}_{i t}=0$ for all periods t.
- If $\ddot{X}_{i t}=0$ for all i and t, violates invertibility.
- R/Stata and the like will drop it from the regression.
- Any time-constant variable gets "absorbed" by the fixed effect.

Fixed effects and time-invariant covariates

- What if there is a covariate that doesn't vary over time?
- $\rightsquigarrow X_{i t}=\bar{X}_{i}$ and $\ddot{X}_{i t}=0$ for all periods t.
- If $\ddot{X}_{i t}=0$ for all i and t, violates invertibility.
- R/Stata and the like will drop it from the regression.
- Any time-constant variable gets "absorbed" by the fixed effect.
- Can include interactions between time-constant and time-varying variables, but lower order term of the time-constant variables get absorbed by fixed effects too.

Time-constant variables

- Pooled model with a time-constant variable, proportion Islamic:

```
library(lmtest)
p.mod <- lm(log(kidmort_unicef) ~ democracy + log(GDPcur) + islam, data = ross)
coeftest(p.mod, vcov = vcovHC)
```


Time-constant variables

- FE model, where the islam variable drops out, along with the intercept:

```
fe.mod2 <- feols(
    log(kidmort_unicef) ~ democracy + log(GDPcur) + islam | id,
    data = ross, vcov = "hetero")
summary(fe.mod2)
```

```
## OLS estimation, Dep. Var.: log(kidmort_unicef)
## Observations: 220
## Fixed-effects: id: 45
## Standard-errors: Heteroskedasticity-robust
## Estimate Std. Error t value Pr(>|t|)
## democracy -0.144 0.0347 -4.14 0.000054978
## log(GDPcur) -0.360 0.0257 -14.00 < 2.2e-16
##
## democracy ***
## log(GDPcur) ***
## ... 1 variable was removed because of collinearity (islam)
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## RMSE: 0.185449 Adj. R2: 0.949078
##
    Within R2: 0.717818
```


Least squares dummy variable

- Naive OLS on demeaned data is ok for $\hat{\beta}$ but the SEs are wrong.

Least squares dummy variable

- Naive OLS on demeaned data is ok for $\hat{\beta}$ but the SEs are wrong.
- OLS doesn't know you "used" the data to estimate the within-unit means.

Least squares dummy variable

- Naive OLS on demeaned data is ok for $\hat{\beta}$ but the SEs are wrong.
- OLS doesn't know you "used" the data to estimate the within-unit means.
- As an alternative, dummy variable estimator regressing:

$$
Y_{i t} \text { on } \mathbf{X}_{i t}, D_{i 2}, D_{i 3}, \ldots D_{i n}
$$

Least squares dummy variable

- Naive OLS on demeaned data is ok for $\hat{\beta}$ but the SEs are wrong.
- OLS doesn't know you "used" the data to estimate the within-unit means.
- As an alternative, dummy variable estimator regressing:

$$
Y_{i t} \text { on } \mathbf{X}_{i t}, D_{i 2}, D_{i 3}, \ldots D_{i n}
$$

- Here, $D_{i 2}$ is a binary variable which is 1 if $i=2$ and 0 otherwise.

Least squares dummy variable

- Naive OLS on demeaned data is ok for $\hat{\beta}$ but the SEs are wrong.
- OLS doesn't know you "used" the data to estimate the within-unit means.
- As an alternative, dummy variable estimator regressing:

$$
Y_{i t} \text { on } \mathbf{X}_{i t}, D_{i 2}, D_{i 3}, \ldots D_{i n}
$$

- Here, $D_{i 2}$ is a binary variable which is 1 if $i=2$ and 0 otherwise.
- Gives the exact same point estimates as within transformation.

Least squares dummy variable

- Naive OLS on demeaned data is ok for $\hat{\beta}$ but the SEs are wrong.
- OLS doesn't know you "used" the data to estimate the within-unit means.
- As an alternative, dummy variable estimator regressing:

$$
Y_{i t} \text { on } \mathbf{X}_{i t}, D_{i 2}, D_{i 3}, \ldots D_{i n}
$$

- Here, $D_{i 2}$ is a binary variable which is 1 if $i=2$ and 0 otherwise.
- Gives the exact same point estimates as within transformation.
- Comments:

Least squares dummy variable

- Naive OLS on demeaned data is ok for $\hat{\beta}$ but the SEs are wrong.
- OLS doesn't know you "used" the data to estimate the within-unit means.
- As an alternative, dummy variable estimator regressing:

$$
Y_{i t} \text { on } \mathbf{X}_{i t}, D_{i 2}, D_{i 3}, \ldots D_{i n}
$$

- Here, $D_{i 2}$ is a binary variable which is 1 if $i=2$ and 0 otherwise.
- Gives the exact same point estimates as within transformation.
- Comments:
- Pros: easy to implement and gives correct SEs.

Least squares dummy variable

- Naive OLS on demeaned data is ok for $\hat{\beta}$ but the SEs are wrong.
- OLS doesn't know you "used" the data to estimate the within-unit means.
- As an alternative, dummy variable estimator regressing:

$$
Y_{i t} \text { on } \mathbf{X}_{i t}, D_{i 2}, D_{i 3}, \ldots D_{i n}
$$

- Here, $D_{i 2}$ is a binary variable which is 1 if $i=2$ and 0 otherwise.
- Gives the exact same point estimates as within transformation.
- Comments:
- Pros: easy to implement and gives correct SEs.
- Con: computationally slow with large n.

Least squares dummy variable

- Naive OLS on demeaned data is ok for $\hat{\beta}$ but the SEs are wrong.
- OLS doesn't know you "used" the data to estimate the within-unit means.
- As an alternative, dummy variable estimator regressing:

$$
Y_{i t} \text { on } \mathbf{X}_{i t}, D_{i 2}, D_{i 3}, \ldots D_{i n}
$$

- Here, $D_{i 2}$ is a binary variable which is 1 if $i=2$ and 0 otherwise.
- Gives the exact same point estimates as within transformation.
- Comments:
- Pros: easy to implement and gives correct SEs.
- Con: computationally slow with large n.
- Usually better to use dedicated software like fixest package in R.

Example with Ross data

```
lsdv.mod <- lm(log(kidmort_unicef) ~ democracy + log(GDPcur) + id,
    data = ross)
coeftest(lsdv.mod, vcov = vcovHC)[1:6,]
```

\#\#	Estimate Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$			
\#\# (Intercept)	11.385	0.6306	18.05	$2.01 \mathrm{e}-42$
\#\# democracy	-0.156	0.0366	-4.27	$3.14 \mathrm{e}-05$
\#\# log(GDPcur)	-0.354	0.0295	-11.99	$8.65 \mathrm{e}-25$
\#\# idARG	1.263	0.1425	8.87	$6.82 \mathrm{e}-16$
\#\# idARM	0.462	0.1287	3.59	$4.20 \mathrm{e}-04$
\#\# idBEN	1.334	0.0884	15.08	$7.10 \mathrm{e}-34$

coeftest(fe.mod)[1:2,]

\#\#	Estimate Std. Error z value	$\operatorname{Pr}(>\|z\|)$		
\#\# democracy	-0.156	0.0314	-4.97	$6.69 \mathrm{e}-07$
\#\# log(GDPcur)	-0.354	0.0252	-14.03	$1.08 \mathrm{e}-44$

4/ Clustering

Clustered dependence: intuition

- Think back to the Gerber, Green, and Larimer (2008) social pressure mailer example.

Clustered dependence: intuition

- Think back to the Gerber, Green, and Larimer (2008) social pressure mailer example.
- Randomly assign households to different treatment conditions.

Clustered dependence: intuition

- Think back to the Gerber, Green, and Larimer (2008) social pressure mailer example.
- Randomly assign households to different treatment conditions.
- But the measurement of turnout is at the individual level.

Clustered dependence: intuition

- Think back to the Gerber, Green, and Larimer (2008) social pressure mailer example.
- Randomly assign households to different treatment conditions.
- But the measurement of turnout is at the individual level.
- Zero conditional mean error holds here (random assignment)

Clustered dependence: intuition

- Think back to the Gerber, Green, and Larimer (2008) social pressure mailer example.
- Randomly assign households to different treatment conditions.
- But the measurement of turnout is at the individual level.
- Zero conditional mean error holds here (random assignment)
- Violation of iid/random sampling:

Clustered dependence: intuition

- Think back to the Gerber, Green, and Larimer (2008) social pressure mailer example.
- Randomly assign households to different treatment conditions.
- But the measurement of turnout is at the individual level.
- Zero conditional mean error holds here (random assignment)
- Violation of iid/random sampling:
- errors of individuals within the same household are correlated.

Clustered dependence: intuition

- Think back to the Gerber, Green, and Larimer (2008) social pressure mailer example.
- Randomly assign households to different treatment conditions.
- But the measurement of turnout is at the individual level.
- Zero conditional mean error holds here (random assignment)
- Violation of iid/random sampling:
- errors of individuals within the same household are correlated.
- SEs are going to be wrong.

Clustered dependence: intuition

- Think back to the Gerber, Green, and Larimer (2008) social pressure mailer example.
- Randomly assign households to different treatment conditions.
- But the measurement of turnout is at the individual level.
- Zero conditional mean error holds here (random assignment)
- Violation of iid/random sampling:
- errors of individuals within the same household are correlated.
- SEs are going to be wrong.
- Called clustering or clustered dependence

Clustered dependence: notation

- Clusters (groups): $g=1, \ldots, m$

Clustered dependence: notation

- Clusters (groups): $g=1, \ldots, m$
- Units: $i=1, \ldots, n_{g}$

Clustered dependence: notation

- Clusters (groups): $g=1, \ldots, m$
- Units: $i=1, \ldots, n_{g}$
- n_{g} is the number of units in cluster g

Clustered dependence: notation

- Clusters (groups): $g=1, \ldots, m$
- Units: $i=1, \ldots, n_{g}$
- n_{g} is the number of units in cluster g
- $n=\sum_{g=1}^{m} n_{g}$ is the total number of units

Clustered dependence: notation

- Clusters (groups): $g=1, \ldots, m$
- Units: $i=1, \ldots, n_{g}$
- n_{g} is the number of units in cluster g
- $n=\sum_{g=1}^{m} n_{g}$ is the total number of units
- Units are (usually) belong to a single cluster:

Clustered dependence: notation

- Clusters (groups): $g=1, \ldots, m$
- Units: $i=1, \ldots, n_{g}$
- n_{g} is the number of units in cluster g
- $n=\sum_{g=1}^{m} n_{g}$ is the total number of units
- Units are (usually) belong to a single cluster:
- voters in households

Clustered dependence: notation

- Clusters (groups): $g=1, \ldots, m$
- Units: $i=1, \ldots, n_{g}$
- n_{g} is the number of units in cluster g
- $n=\sum_{g=1}^{m} n_{g}$ is the total number of units
- Units are (usually) belong to a single cluster:
- voters in households
- individuals in states

Clustered dependence: notation

- Clusters (groups): $g=1, \ldots, m$
- Units: $i=1, \ldots, n_{g}$
- n_{g} is the number of units in cluster g
- $n=\sum_{g=1}^{m} n_{g}$ is the total number of units
- Units are (usually) belong to a single cluster:
- voters in households
- individuals in states
- students in classes

Clustered dependence: notation

- Clusters (groups): $g=1, \ldots, m$
- Units: $i=1, \ldots, n_{g}$
- n_{g} is the number of units in cluster g
- $n=\sum_{g=1}^{m} n_{g}$ is the total number of units
- Units are (usually) belong to a single cluster:
- voters in households
- individuals in states
- students in classes
- rulings in judges

Clustered dependence: notation

- Clusters (groups): $g=1, \ldots, m$
- Units: $i=1, \ldots, n_{g}$
- n_{g} is the number of units in cluster g
- $n=\sum_{g=1}^{m} n_{g}$ is the total number of units
- Units are (usually) belong to a single cluster:
- voters in households
- individuals in states
- students in classes
- rulings in judges
- Outcome varies at the unit-level, $Y_{i g}$ and the main independent variable varies at the cluster level, X_{g}.

Clustered dependence: example model

$$
\begin{aligned}
Y_{i g} & =\beta_{0}+X_{g} \beta_{1}+v_{i g} \\
& =\beta_{0}+X_{g} \beta_{1}+c_{g}+u_{i g}
\end{aligned}
$$

- $u_{i g}$ unit error component with $\mathbb{V}\left[u_{i g} \mid X_{g}\right]=\sigma_{u}^{2}$

Clustered dependence: example model

$$
\begin{aligned}
Y_{i g} & =\beta_{0}+X_{g} \beta_{1}+v_{i g} \\
& =\beta_{0}+X_{g} \beta_{1}+c_{g}+u_{i g}
\end{aligned}
$$

- $u_{i g}$ unit error component with $\mathbb{V}\left[u_{i g} \mid X_{g}\right]=\sigma_{u}^{2}$
- c_{g} cluster error component with $\mathbb{V}\left[c_{g} \mid X_{g}\right]=\sigma_{c}^{2}$

Clustered dependence: example model

$$
\begin{aligned}
Y_{i g} & =\beta_{0}+X_{g} \beta_{1}+v_{i g} \\
& =\beta_{0}+X_{g} \beta_{1}+c_{g}+u_{i g}
\end{aligned}
$$

- $u_{i g}$ unit error component with $\mathbb{V}\left[u_{i g} \mid X_{g}\right]=\sigma_{u}^{2}$
- c_{g} cluster error component with $\mathbb{V}\left[c_{g} \mid X_{g}\right]=\sigma_{c}^{2}$
- c_{g} and $u_{i g}$ are assumed to be independent of each other.

Clustered dependence: example model

$$
\begin{aligned}
Y_{i g} & =\beta_{0}+X_{g} \beta_{1}+v_{i g} \\
& =\beta_{0}+X_{g} \beta_{1}+c_{g}+u_{i g}
\end{aligned}
$$

- $u_{i g}$ unit error component with $\mathbb{V}\left[u_{i g} \mid X_{g}\right]=\sigma_{u}^{2}$
- c_{g} cluster error component with $\mathbb{V}\left[c_{g} \mid X_{g}\right]=\sigma_{c}^{2}$
- c_{g} and $u_{i g}$ are assumed to be independent of each other.

$$
\cdot \rightsquigarrow V\left[v_{i g} \mid X_{g}\right]=\sigma_{c}^{2}+\sigma_{u}^{2}
$$

Clustered dependence: example model

$$
\begin{aligned}
Y_{i g} & =\beta_{0}+X_{g} \beta_{1}+v_{i g} \\
& =\beta_{0}+X_{g} \beta_{1}+c_{g}+u_{i g}
\end{aligned}
$$

- $u_{i g}$ unit error component with $\mathbb{V}\left[u_{i g} \mid X_{g}\right]=\sigma_{u}^{2}$
- c_{g} cluster error component with $\mathbb{V}\left[c_{g} \mid X_{g}\right]=\sigma_{c}^{2}$
- c_{g} and $u_{i g}$ are assumed to be independent of each other.

$$
\cdot \rightsquigarrow V\left[v_{i g} \mid X_{g}\right]=\sigma_{c}^{2}+\sigma_{u}^{2}
$$

-What if we ignore this structure and just use $v_{i g}$ as the error?

Lack of independence

- Covariance between two units i and s in the same cluster:

$$
\operatorname{Cov}\left[v_{i g}, v_{s g}\right]=\sigma_{c}^{2}
$$

Lack of independence

- Covariance between two units i and s in the same cluster:

$$
\operatorname{Cov}\left[v_{i g}, v_{s g}\right]=\sigma_{c}^{2}
$$

- Correlation between units in the same group is called the intra-class correlation coefficient, or ρ_{c} :

$$
\operatorname{Cor}\left[v_{i g}, v_{s g}\right]=\frac{\sigma_{c}^{2}}{\sigma_{c}^{2}+\sigma_{u}^{2}}=\rho_{c}
$$

Lack of independence

- Covariance between two units i and s in the same cluster:

$$
\operatorname{Cov}\left[v_{i g}, v_{s g}\right]=\sigma_{c}^{2}
$$

- Correlation between units in the same group is called the intra-class correlation coefficient, or ρ_{c} :

$$
\operatorname{Cor}\left[v_{i g}, v_{s g}\right]=\frac{\sigma_{c}^{2}}{\sigma_{c}^{2}+\sigma_{u}^{2}}=\rho_{c}
$$

- Zero covariance of two units i and s in different clusters g and k :

$$
\operatorname{Cov}\left[v_{i g}, v_{s k}\right]=0
$$

Example covariance matrix

$\cdot \mathbf{v}^{\prime}=\left[\begin{array}{llllll}v_{1,1} & v_{2,1} & v_{3,1} & v_{4,2} & v_{5,2} & v_{6,2}\end{array}\right]$

Example covariance matrix

$\cdot \mathbf{v}^{\prime}=\left[\begin{array}{llllll}v_{1,1} & v_{2,1} & v_{3,1} & v_{4,2} & v_{5,2} & v_{6,2}\end{array}\right]$

- Variance matrix under clustering:

Example covariance matrix

- $\mathbf{v}^{\prime}=\left[\begin{array}{llllll}v_{1,1} & v_{2,1} & v_{3,1} & v_{4,2} & v_{5,2} & v_{6,2}\end{array}\right]$
- Variance matrix under clustering:

$$
\mathbb{V}[\mathbf{v} \mid \mathbf{X}]=\left[\begin{array}{cccccc}
\sigma_{c}^{2}+\sigma_{u}^{2} & \sigma_{c}^{2} & \sigma_{c}^{2} & 0 & 0 & 0 \\
\sigma_{c}^{2} & \sigma_{c}^{2}+\sigma_{u}^{2} & \sigma_{c}^{2} & 0 & 0 & 0 \\
\sigma_{c}^{2} & \sigma_{c}^{2} & \sigma_{c}^{2}+\sigma_{u}^{2} & 0 & 0 & 0 \\
0 & 0 & 0 & \sigma_{c}^{2}+\sigma_{u}^{2} & \sigma_{c}^{2} & \sigma_{c}^{2} \\
0 & 0 & 0 & \sigma_{c}^{2} & \sigma_{c}^{2}+\sigma_{u}^{2} & \sigma_{c}^{2} \\
0 & 0 & 0 & \sigma_{c}^{2} & \sigma_{c}^{2} & \sigma_{c}^{2}+\sigma_{u}^{2}
\end{array}\right]
$$

Example covariance matrix

- $\mathbf{v}^{\prime}=\left[\begin{array}{llllll}v_{1,1} & v_{2,1} & v_{3,1} & v_{4,2} & v_{5,2} & v_{6,2}\end{array}\right]$
- Variance matrix under clustering:

$$
\mathbb{V}[\mathbf{v} \mid \mathbf{X}]=\left[\begin{array}{cccccc}
\sigma_{c}^{2}+\sigma_{u}^{2} & \sigma_{c}^{2} & \sigma_{c}^{2} & 0 & 0 & 0 \\
\sigma_{c}^{2} & \sigma_{c}^{2}+\sigma_{u}^{2} & \sigma_{c}^{2} & 0 & 0 & 0 \\
\sigma_{c}^{2} & \sigma_{c}^{2} & \sigma_{c}^{2}+\sigma_{u}^{2} & 0 & 0 & 0 \\
0 & 0 & 0 & \sigma_{c}^{2}+\sigma_{u}^{2} & \sigma_{c}^{2} & \sigma_{c}^{2} \\
0 & 0 & 0 & \sigma_{c}^{2} & \sigma_{c}^{2}+\sigma_{u}^{2} & \sigma_{c}^{2} \\
0 & 0 & 0 & \sigma_{c}^{2} & \sigma_{c}^{2} & \sigma_{c}^{2}+\sigma_{u}^{2}
\end{array}\right]
$$

- Variance matrix under i.i.d.:

$$
\nabla[\mathbf{v} \mid \mathbf{X}]=\left[\begin{array}{cccccc}
\sigma_{u}^{2} & 0 & 0 & 0 & 0 & 0 \\
0 & \sigma_{u}^{2} & 0 & 0 & 0 & 0 \\
0 & 0 & \sigma_{u}^{2} & 0 & 0 & 0 \\
0 & 0 & 0 & \sigma_{u}^{2} & 0 & 0 \\
0 & 0 & 0 & 0 & \sigma_{u}^{2} & 0 \\
0 & 0 & 0 & 0 & 0 & \sigma_{u}^{2}
\end{array}\right]
$$

Effects of clustering

$$
Y_{i g}=\beta_{0}+X_{g} \beta_{1}+c_{g}+u_{i g}
$$

- $\mathbb{V}^{0}\left[\hat{\beta}_{1}\right]=$ conventional OLS variance assuming i.i.d./ homoskedasticity.

Effects of clustering

$$
Y_{i g}=\beta_{0}+X_{g} \beta_{1}+c_{g}+u_{i g}
$$

- $\mathbb{V}^{0}\left[\hat{\beta}_{1}\right]=$ conventional OLS variance assuming i.i.d./homoskedasticity.
- Let $\mathbb{V}\left[\hat{\beta}_{1}\right]$ be the true sampling variance under clustering.

Effects of clustering

$$
Y_{i g}=\beta_{0}+X_{g} \beta_{1}+c_{g}+u_{i g}
$$

- $\mathbb{V}^{0}\left[\hat{\beta}_{1}\right]=$ conventional OLS variance assuming i.i.d./homoskedasticity.
- Let $\mathbb{V}\left[\hat{\beta}_{1}\right]$ be the true sampling variance under clustering.
- When clusters are balanced, $n^{*}=n_{g}$, comparison of clustered to conventional:

$$
\mathbb{V}\left[\hat{\beta}_{1}\right] \approx \mathbb{V}^{0}\left[\hat{\beta}_{1}\right]\left(1+\left(n^{*}-1\right) \rho_{c}\right)
$$

Effects of clustering

$$
Y_{i g}=\beta_{0}+X_{g} \beta_{1}+c_{g}+u_{i g}
$$

- $\mathbb{V}^{0}\left[\hat{\beta}_{1}\right]=$ conventional OLS variance assuming i.i.d./homoskedasticity.
- Let $\mathbb{V}\left[\hat{\beta}_{1}\right]$ be the true sampling variance under clustering.
- When clusters are balanced, $n^{*}=n_{g}$, comparison of clustered to conventional:

$$
\mathbb{V}\left[\hat{\beta}_{1}\right] \approx \mathbb{V}^{0}\left[\hat{\beta}_{1}\right]\left(1+\left(n^{*}-1\right) \rho_{c}\right)
$$

- True variance will be higher than conventional when within-cluster correlation is positive, $\rho_{c}>0$.

Linear model with clustering

$$
Y_{i g}=\mathbf{X}_{i g}^{\prime} \boldsymbol{\beta}+v_{i g}
$$

- Assumptions:

Linear model with clustering

$$
Y_{i g}=\mathbf{X}_{i g}^{\prime} \boldsymbol{\beta}+v_{i g}
$$

- Assumptions:
- $\mathbb{E}\left[v_{i g} \mid \mathbf{X}_{i g}\right]=0$ so we have the correct CEF.

Linear model with clustering

$$
Y_{i g}=\mathbf{X}_{i g}^{\prime} \boldsymbol{\beta}+v_{i g}
$$

- Assumptions:
- $\mathbb{E}\left[v_{i g} \mid \mathbf{X}_{i g}\right]=0$ so we have the correct CEF.
- $\mathbb{E}\left[v_{i g} v_{j g^{\prime}} \mid \mathbf{X}_{i g}, \mathbf{X}_{j g^{\prime}}\right]=0$ unless $g=g^{\prime}$.

Linear model with clustering

$$
Y_{i g}=\mathbf{X}_{i g}^{\prime} \boldsymbol{\beta}+v_{i g}
$$

- Assumptions:
- $\mathbb{E}\left[v_{i g} \mid \mathbf{X}_{i g}\right]=0$ so we have the correct CEF.
- $\mathbb{E}\left[v_{i g} v_{j g^{\prime}} \mid \mathbf{X}_{i g}, \mathbf{X}_{j g^{\prime}}\right]=0$ unless $g=g^{\prime}$.
- Correlated errors allowed within groups, uncorrelated across. Allows heteroskedasticity.

Linear model with clustering

$$
Y_{i g}=\mathbf{X}_{i g}^{\prime} \boldsymbol{\beta}+v_{i g}
$$

- Assumptions:
- $\mathbb{E}\left[v_{i g} \mid \mathbf{X}_{i g}\right]=0$ so we have the correct CEF.
- $\mathbb{E}\left[v_{i g} v_{j g^{\prime}} \mid \mathbf{X}_{i g}, \mathbf{X}_{j g^{\prime}}\right]=0$ unless $g=g^{\prime}$.
- Correlated errors allowed within groups, uncorrelated across. Allows heteroskedasticity.
- Pooled OLS under clustered dependence:

$$
\mathbf{Y}_{g}=\mathbb{X}_{g} \boldsymbol{\beta}+\mathbf{v}_{g}
$$

Linear model with clustering

$$
Y_{i g}=\mathbf{X}_{i g}^{\prime} \boldsymbol{\beta}+v_{i g}
$$

- Assumptions:
- $\mathbb{E}\left[v_{i g} \mid \mathbf{X}_{i g}\right]=0$ so we have the correct CEF.
- $\mathbb{E}\left[v_{i g} v_{j g^{\prime}} \mid \mathbf{X}_{i g}, \mathbf{X}_{j g^{\prime}}\right]=0$ unless $g=g^{\prime}$.
- Correlated errors allowed within groups, uncorrelated across. Allows heteroskedasticity.
- Pooled OLS under clustered dependence:

$$
\mathbf{Y}_{g}=\mathbb{X}_{g} \boldsymbol{\beta}+\mathbf{v}_{g}
$$

- \mathbf{Y}_{g} is the $n_{g} \times 1$ vector of responses for cluster g

Linear model with clustering

$$
Y_{i g}=\mathbf{X}_{i g}^{\prime} \boldsymbol{\beta}+v_{i g}
$$

- Assumptions:
- $\mathbb{E}\left[v_{i g} \mid \mathbf{X}_{i g}\right]=0$ so we have the correct CEF.
- $\mathbb{E}\left[v_{i g} v_{j g^{\prime}} \mid \mathbf{X}_{i g}, \mathbf{X}_{j g^{\prime}}\right]=0$ unless $g=g^{\prime}$.
- Correlated errors allowed within groups, uncorrelated across. Allows heteroskedasticity.
- Pooled OLS under clustered dependence:

$$
\mathbf{Y}_{g}=\mathbb{X}_{g} \boldsymbol{\beta}+\mathbf{v}_{g}
$$

- \mathbf{Y}_{g} is the $n_{g} \times 1$ vector of responses for cluster g
- \mathbb{K}_{g} is the $n_{g} \times k$ matrix of data for the g th cluster.

Linear model with clustering

$$
Y_{i g}=\mathbf{X}_{i g}^{\prime} \boldsymbol{\beta}+v_{i g}
$$

- Assumptions:
- $\mathbb{E}\left[v_{i g} \mid \mathbf{X}_{i g}\right]=0$ so we have the correct CEF.
- $\mathbb{E}\left[v_{i g} v_{j g^{\prime}} \mid \mathbf{X}_{i g}, \mathbf{X}_{j g^{\prime}}\right]=0$ unless $g=g^{\prime}$.
- Correlated errors allowed within groups, uncorrelated across. Allows heteroskedasticity.
- Pooled OLS under clustered dependence:

$$
\mathbf{Y}_{g}=\mathbb{X}_{g} \boldsymbol{\beta}+\mathbf{v}_{g}
$$

- \mathbf{Y}_{g} is the $n_{g} \times 1$ vector of responses for cluster g
- \mathbb{K}_{g} is the $n_{g} \times k$ matrix of data for the g th cluster.
- We can write the OLS estimator as:

$$
\hat{\boldsymbol{\beta}}=\left(\sum_{g=1}^{m} \mathbb{X}_{g}^{\prime} \mathbb{X}_{g}\right)\left(\sum_{g=1}^{m} \mathbb{X}_{g}^{\prime} \mathbf{Y}_{g}\right)
$$

Cluster-robust variance estimator

- Independence is across clusters so the CLT holds as m gets big.

Cluster-robust variance estimator

- Independence is across clusters so the CLT holds as m gets big.
- Key intuition: we're sampling clusters, not individual units.

Cluster-robust variance estimator

- Independence is across clusters so the CLT holds as m gets big.
- Key intuition: we're sampling clusters, not individual units.
- CLT implies $\sqrt{m}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})$ will be asymp. normal with mean 0 and variance:

$$
\left(\mathbb{E}\left[\mathbb{K}_{g}^{\prime} \mathcal{K}_{g}\right]\right)^{-1} \mathbb{E}\left[\mathbb{K}_{g}^{\prime} \mathbf{v}_{g} \mathbf{v}_{g}^{\prime} \mathcal{X}_{g}\right]\left(\mathbb{E}\left[\mathcal{K}_{g}^{\prime} \mathcal{X}_{g}\right]\right)^{-1}
$$

Cluster-robust variance estimator

- Independence is across clusters so the CLT holds as m gets big.
- Key intuition: we're sampling clusters, not individual units.
- CLT implies $\sqrt{m}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})$ will be asymp. normal with mean 0 and variance:

$$
\left(\mathbb{E}\left[\mathbb{K}_{g}^{\prime} \mathcal{X}_{g}\right]\right)^{-1} \mathbb{E}\left[\mathbb{X}_{g}^{\prime} \mathbf{v}_{g} \mathbf{v}_{g}^{\prime} \mathbb{X}_{g}\right]\left(\mathbb{E}\left[\mathbb{X}_{g}^{\prime} \mathbb{X}_{g}\right]\right)^{-1}
$$

- Similar to the iid case, replace population quantities with sample versions (and divide by m):

$$
\widehat{\mathbf{V}}_{\hat{\beta}}^{c\llcorner 0}=\left(\mathbb{X}^{\prime} \mathbb{X}\right)^{-1}\left(\sum_{g=1}^{m} \mathbb{X}_{g}^{\prime} \hat{\mathbf{v}}_{g} \hat{\mathbf{v}}_{g}^{\prime} \mathbb{K}_{g}\right)\left(\mathbb{K}^{\prime} \mathbb{X}\right)^{-1}
$$

Cluster-robust variance estimator

- Independence is across clusters so the CLT holds as m gets big.
- Key intuition: we're sampling clusters, not individual units.
- CLT implies $\sqrt{m}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})$ will be asymp. normal with mean 0 and variance:

$$
\left(\mathbb{E}\left[\mathbb{K}_{g}^{\prime} \mathcal{X}_{g}\right]\right)^{-1} \mathbb{E}\left[\mathbb{K}_{g}^{\prime} \mathbf{v}_{g} \mathbf{v}_{g}^{\prime} \mathcal{X}_{g}\right]\left(\mathbb{E}\left[\mathbb{K}_{g}^{\prime} \mathcal{X}_{g}\right]\right)^{-1}
$$

- Similar to the iid case, replace population quantities with sample versions (and divide by m):

$$
\widehat{\mathbf{V}}_{\hat{\beta}}^{c\llcorner 0}=\left(\mathcal{X}^{\prime} \mathcal{X}\right)^{-1}\left(\sum_{g=1}^{m} \mathbb{X}_{g}^{\prime} \hat{\mathbf{v}}_{g} \hat{\mathbf{v}}_{g}^{\prime} \mathbb{X}_{g}\right)\left(\mathcal{X}^{\prime} \mathbb{X}\right)^{-1}
$$

- Noting: $\mathbb{K}^{\prime} \mathcal{K} / m=m^{-1} \sum_{g=1}^{m} \chi_{g}^{\prime} \chi_{g}$

Cluster-robust variance estimator

- Independence is across clusters so the CLT holds as m gets big.
- Key intuition: we're sampling clusters, not individual units.
- CLT implies $\sqrt{m}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})$ will be asymp. normal with mean 0 and variance:

$$
\left(\mathbb{E}\left[\mathbb{K}_{g}^{\prime} \mathcal{K}_{g}\right]\right)^{-1} \mathbb{E}\left[\mathbb{K}_{g}^{\prime} \mathbf{v}_{g} \mathbf{v}_{g}^{\prime} \mathcal{X}_{g}\right]\left(\mathbb{E}\left[\mathcal{K}_{g}^{\prime} \mathcal{X}_{g}\right]\right)^{-1}
$$

- Similar to the iid case, replace population quantities with sample versions (and divide by m):

$$
\widehat{\mathbf{V}}_{\hat{\beta}}^{c\llcorner 0}=\left(\mathcal{X}^{\prime} \mathcal{X}\right)^{-1}\left(\sum_{g=1}^{m} \mathbb{X}_{g}^{\prime} \hat{\mathbf{v}}_{g} \hat{\mathbf{v}}_{g}^{\prime} \mathbb{X}_{g}\right)\left(\mathcal{X}^{\prime} \mathbb{X}\right)^{-1}
$$

- Noting: $\mathbb{K}^{\prime} \mathbb{X} / m=m^{-1} \sum_{g=1}^{m} \mathbb{X}_{g}^{\prime} \chi_{g}$
- With small-sample adjustment (reported by most software):

$$
\widehat{\mathbf{V}}_{\hat{\beta}}^{\mathrm{Cl}}=\frac{m}{m-1} \frac{n-1}{n-k}\left(\mathbb{X}^{\prime} \mathbb{X}\right)^{-1}\left(\sum_{g=1}^{m} \mathbb{X}_{g}^{\prime} \hat{\mathbf{V}}_{g} \hat{\mathbf{v}}_{g}^{\prime} \mathbb{X}_{g}\right)\left(\mathbb{K}^{\prime} \mathbb{X}\right)^{-1}
$$

Example: Gerber, Green, Larimer

Dear Registered Voter:

WHAT IF YOUR NEIGHBORS KNEW WHETHER YOU VOTED?

Why do so many people fail to vote? We've been talking about the problem for years, but it only seems to get worse. This year, we're taking a new approach. We're sending this mailing to you and your neighbors to publicize who does and does not vote.

The chart shows the names of some of your neighbors, showing which have voted in the past. After the August 8 election, we intend to mail an updated chart. You and your neighbors will all know who voted and who did not.

DO YOUR CIVIC DUTY - VOTE!

MAPLE DR	Aug 04	Nov 04	Aug 06
9995 JOSEPH JAMES SMITH	Voted	Voted	
9995 JENNIFER KAY SMITH		Voted	-
9997 RICHARD B JACKSON		Voted	-
9999 KATHY MARIE JACKSON		Voted	-

Social pressure model

```
load("../assets/gerber_green_larimer.RData")
library(lmtest)
social$voted <- 1 * (social$voted == "Yes")
social$treatment <- factor(
    social$treatment,
    levels = c("Control", "Hawthorne", "Civic Duty", "Neighbors", "Self")
)
mod1 <- lm(voted ~ treatment, data = social)
coeftest(mod1)
```

| \#\# | | | |
| :--- | ---: | ---: | ---: | ---: |
| \#\# t test of coefficients: | | | |
| \#\# | | | |
| \#\# | 0.29664 | 0.00106 | 279.53 |
| \#\# (Intercept) | 0.02574 | 0.00260 | 9.90 |
| \#\# treatmentHawthorne | | | |
| \#\# treatmentCivic Duty | 0.01790 | 0.00260 | 6.88 |
| \#\# treatmentNeighbors | 0.08131 | 0.00260 | 31.26 |
| \#\# treatmentSelf | 0.04851 | 0.00260 | 18.66 |
| \#\# | $\operatorname{Pr}(>\|t\|)$ | | |
| \#\# (Intercept) | $<2 e-16$ | $* * *$ | |
| \#\# treatmentHawthorne | $<2 e-16$ | $* * *$ | |
| \#\# treatmentCivic Duty | $5.8 e-12$ | $* * *$ | |
| \#\# treatmentNeighbors | $<2 e-16$ | $* * *$ | |
| \#\# treatmentSelf | $<2 e-16$ | $* * *$ | |

Social pressure model, CRSEs

```
library(sandwich)
coeftest(mod1, vcov = sandwich::vcovCL(mod1, cluster = social$hh_id))
```


Cluster-robust standard errors

- CRSE do not change our estimates $\hat{\boldsymbol{\beta}}$, cannot fix bias

Cluster-robust standard errors

- CRSE do not change our estimates $\hat{\boldsymbol{\beta}}$, cannot fix bias
- Valid under clustered dependence when main variable is constant within cluster

Cluster-robust standard errors

- CRSE do not change our estimates $\hat{\boldsymbol{\beta}}$, cannot fix bias
- Valid under clustered dependence when main variable is constant within cluster
- Relies on independence between clusters

Cluster-robust standard errors

- CRSE do not change our estimates $\hat{\boldsymbol{\beta}}$, cannot fix bias
- Valid under clustered dependence when main variable is constant within cluster
- Relies on independence between clusters
- Allows for arbitrary dependence within clusters

Cluster-robust standard errors

- CRSE do not change our estimates $\hat{\boldsymbol{\beta}}$, cannot fix bias
- Valid under clustered dependence when main variable is constant within cluster
- Relies on independence between clusters
- Allows for arbitrary dependence within clusters
- CRSEs usually > conventional SEs-use when you suspect clustering

Cluster-robust standard errors

- CRSE do not change our estimates $\hat{\boldsymbol{\beta}}$, cannot fix bias
- Valid under clustered dependence when main variable is constant within cluster
- Relies on independence between clusters
- Allows for arbitrary dependence within clusters
- CRSEs usually > conventional SEs-use when you suspect clustering
- When $X_{i g}$ not constant within cluster, but just correlated \rightsquigarrow more complicated.

Cluster-robust standard errors

- CRSE do not change our estimates $\hat{\boldsymbol{\beta}}$, cannot fix bias
- Valid under clustered dependence when main variable is constant within cluster
- Relies on independence between clusters
- Allows for arbitrary dependence within clusters
- CRSEs usually > conventional SEs-use when you suspect clustering
- When $X_{i g}$ not constant within cluster, but just correlated \rightsquigarrow more complicated.
- See Abadie, Athey, Imbens, and Wooldridge (2021).

Cluster-robust standard errors

- CRSE do not change our estimates $\hat{\boldsymbol{\beta}}$, cannot fix bias
- Valid under clustered dependence when main variable is constant within cluster
- Relies on independence between clusters
- Allows for arbitrary dependence within clusters
- CRSEs usually > conventional SEs-use when you suspect clustering
- When $X_{i g}$ not constant within cluster, but just correlated \rightsquigarrow more complicated.
- See Abadie, Athey, Imbens, and Wooldridge (2021).
- Consistency of the CRSE are in the number of groups, not the number of individuals

Cluster-robust standard errors

- CRSE do not change our estimates $\hat{\boldsymbol{\beta}}$, cannot fix bias
- Valid under clustered dependence when main variable is constant within cluster
- Relies on independence between clusters
- Allows for arbitrary dependence within clusters
- CRSEs usually > conventional SEs-use when you suspect clustering
- When $X_{i g}$ not constant within cluster, but just correlated \rightsquigarrow more complicated.
- See Abadie, Athey, Imbens, and Wooldridge (2021).
- Consistency of the CRSE are in the number of groups, not the number of individuals
- CRSEs can be incorrect with a small (< 50 maybe) number of clusters

