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Where are we? Where are we going?

• Focus up until now on iid data, but often doesn’t hold.

• Panel and clustered data are two common non-iid data.

• Panel data also holds hope for removing unmeasured heterogeneity.
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1/ Panel Data



Motivation

• Relationship between democracy and infant mortality?

• Compare levels of democracy with levels of infant mortality, but…

• Democratic countries are different from non-democracies in ways that
we can’t measure?

• they are richer or developed earlier
• provide benefits more efficiently
• posses some cultural trait correlated with better health outcomes

• If have data on countries over time, can we make any progress in spite
of these problems?
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Ross data

library(tidyverse)
library(haven)
ross <- read_dta(”../assets/ross-democracy.dta”)
ross <- ross |>
filter(!is.na(kidmort_unicef), !is.na(democracy), !is.na(GDPcur)) |>
group_by(id) |>
filter(var(democracy, na.rm = TRUE) > 0)

head(ross[,c(”cty_name”, ”year”, ”democracy”, ”infmort_unicef”)])

## # A tibble: 6 x 4
## cty_name year democracy infmort_unicef
## <chr> <dbl> <dbl> <dbl>
## 1 Albania 1990 0 36
## 2 Albania 1995 1 30
## 3 Argentina 1970 0 59
## 4 Argentina 1980 0 33
## 5 Argentina 1990 1 25
## 6 Argentina 1995 1 22
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Notation for panel data

• Units, 𝘪 = 𝟣, … , 𝘯

• Time, 𝘵 = 𝟣, … , 𝘛

• Time is a typical application, but applies to other groupings:

• counties within states
• states within countries
• people within coutries, etc.

• Panel data: large 𝘯, relatively short 𝘛

• Time series, cross-sectional (TSCS) data: smaller 𝘯, large 𝘛 (a political
science term, mostly)
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Model

𝘠𝘪 𝘵 = 𝗫′
𝘪𝘵𝜷 + 𝘤𝘪 + 𝘶𝘪 𝘵

• 𝗫𝘪 𝘵 is a vector of covariates (possibly time-varying)

• 𝘤𝘪 is an unobserved time-constant unit effect (“fixed effect”)

• Confusingly, we’ll allow them to be random variables.

• 𝘶𝘪 𝘵 are the unobserved time-varying “idiosyncratic” errors

• 𝘷𝘪 𝘵 = 𝘤𝘪 + 𝘶𝘪 𝘵 is the combined unobserved error: 𝘠𝘪 𝘵 = 𝗫′
𝘪𝘵𝜷 + 𝘷𝘪 𝘵

• Assume that if we could measure 𝘤𝘪 , we would have the correct CEF:

𝔼[𝘶𝘪 𝘵 ∣ 𝗫𝘪 𝘵 , 𝘤𝘪 ] = 𝟢 ⟹ 𝔼[𝘠𝘪 𝘵 ∣ 𝗫𝘪 𝘵 , 𝘤𝘪 ] = 𝗫′
𝘪𝘵𝜷 + 𝘤𝘪
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Pooled OLS

• Pooled OLS: pool all observations into one regression

• Treats all unit-periods (each 𝘪 𝘵) as an iid unit.

• Has two problems:

1. Variance is probably wrong if there is dependence over time
2. Errors might be correlated with the covariates

• Both problems arise out of ignoring the unmeasured heterogeneity
inherent in 𝘤𝘪
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Pooled OLS with Ross data

library(lmtest)
library(sandwich)
pooled.mod <- lm(log(kidmort_unicef) ~ democracy + log(GDPcur),

data = ross)
coeftest(pooled.mod, vcov = vcovHC)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.3338 0.6279 16.46 < 2e-16 ***
## democracy -0.5639 0.1135 -4.97 1.3e-06 ***
## log(GDPcur) -0.2486 0.0287 -8.66 7.7e-16 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Unmeasured heterogeneity

• Since 𝘶𝘪 𝘵 is the CEF error, 𝗫𝘪 𝘵 are uncorrelated with it: 𝔼[𝗫𝘪 𝘵𝘶𝘪 𝘵 ] = 𝟢.

• If unit-effect 𝘤𝘪 is uncorrelated with 𝗫𝘪 𝘵 , no problem for consistency!

• ⇝ 𝔼[𝗫𝘪 𝘵𝘷𝘪 𝘵 ] = 𝔼[𝗫𝘪 𝘵(𝘤𝘪 + 𝘶𝘪 𝘵)] = 𝟢.
• Just run pooled OLS (but worry about SEs).

• But 𝘤𝘪 often correlated with 𝗫𝘪 𝘵 so that 𝔼[𝗫𝘪 𝘵𝘤𝘪 ] ≠ 𝟢.

• Example: democratic institutions correlated with unmeasured aspects
of health outcomes, like quality of health system or a lack of ethnic
conflict.

• Ignore the heterogeneity⇝ correlation between the combined error
and the independent variables.

• ⇝ 𝔼[𝗫𝘪 𝘵𝘷𝘪 𝘵 ] = 𝔼[𝗫𝘪 𝘵(𝘤𝘪 + 𝘶𝘪 𝘵)] = 𝔼[𝗫𝘪 𝘵𝘤𝘪 ] ≠ 𝟢

• Pooled OLS will be inconsistent for the CEF parameters, 𝜷.

9 / 33



Unmeasured heterogeneity

• Since 𝘶𝘪 𝘵 is the CEF error, 𝗫𝘪 𝘵 are uncorrelated with it: 𝔼[𝗫𝘪 𝘵𝘶𝘪 𝘵 ] = 𝟢.

• If unit-effect 𝘤𝘪 is uncorrelated with 𝗫𝘪 𝘵 , no problem for consistency!

• ⇝ 𝔼[𝗫𝘪 𝘵𝘷𝘪 𝘵 ] = 𝔼[𝗫𝘪 𝘵(𝘤𝘪 + 𝘶𝘪 𝘵)] = 𝟢.
• Just run pooled OLS (but worry about SEs).

• But 𝘤𝘪 often correlated with 𝗫𝘪 𝘵 so that 𝔼[𝗫𝘪 𝘵𝘤𝘪 ] ≠ 𝟢.

• Example: democratic institutions correlated with unmeasured aspects
of health outcomes, like quality of health system or a lack of ethnic
conflict.

• Ignore the heterogeneity⇝ correlation between the combined error
and the independent variables.

• ⇝ 𝔼[𝗫𝘪 𝘵𝘷𝘪 𝘵 ] = 𝔼[𝗫𝘪 𝘵(𝘤𝘪 + 𝘶𝘪 𝘵)] = 𝔼[𝗫𝘪 𝘵𝘤𝘪 ] ≠ 𝟢

• Pooled OLS will be inconsistent for the CEF parameters, 𝜷.

9 / 33



Unmeasured heterogeneity

• Since 𝘶𝘪 𝘵 is the CEF error, 𝗫𝘪 𝘵 are uncorrelated with it: 𝔼[𝗫𝘪 𝘵𝘶𝘪 𝘵 ] = 𝟢.

• If unit-effect 𝘤𝘪 is uncorrelated with 𝗫𝘪 𝘵 , no problem for consistency!

• ⇝ 𝔼[𝗫𝘪 𝘵𝘷𝘪 𝘵 ] = 𝔼[𝗫𝘪 𝘵(𝘤𝘪 + 𝘶𝘪 𝘵)] = 𝟢.

• Just run pooled OLS (but worry about SEs).

• But 𝘤𝘪 often correlated with 𝗫𝘪 𝘵 so that 𝔼[𝗫𝘪 𝘵𝘤𝘪 ] ≠ 𝟢.

• Example: democratic institutions correlated with unmeasured aspects
of health outcomes, like quality of health system or a lack of ethnic
conflict.

• Ignore the heterogeneity⇝ correlation between the combined error
and the independent variables.

• ⇝ 𝔼[𝗫𝘪 𝘵𝘷𝘪 𝘵 ] = 𝔼[𝗫𝘪 𝘵(𝘤𝘪 + 𝘶𝘪 𝘵)] = 𝔼[𝗫𝘪 𝘵𝘤𝘪 ] ≠ 𝟢

• Pooled OLS will be inconsistent for the CEF parameters, 𝜷.

9 / 33



Unmeasured heterogeneity

• Since 𝘶𝘪 𝘵 is the CEF error, 𝗫𝘪 𝘵 are uncorrelated with it: 𝔼[𝗫𝘪 𝘵𝘶𝘪 𝘵 ] = 𝟢.

• If unit-effect 𝘤𝘪 is uncorrelated with 𝗫𝘪 𝘵 , no problem for consistency!

• ⇝ 𝔼[𝗫𝘪 𝘵𝘷𝘪 𝘵 ] = 𝔼[𝗫𝘪 𝘵(𝘤𝘪 + 𝘶𝘪 𝘵)] = 𝟢.
• Just run pooled OLS (but worry about SEs).

• But 𝘤𝘪 often correlated with 𝗫𝘪 𝘵 so that 𝔼[𝗫𝘪 𝘵𝘤𝘪 ] ≠ 𝟢.

• Example: democratic institutions correlated with unmeasured aspects
of health outcomes, like quality of health system or a lack of ethnic
conflict.

• Ignore the heterogeneity⇝ correlation between the combined error
and the independent variables.

• ⇝ 𝔼[𝗫𝘪 𝘵𝘷𝘪 𝘵 ] = 𝔼[𝗫𝘪 𝘵(𝘤𝘪 + 𝘶𝘪 𝘵)] = 𝔼[𝗫𝘪 𝘵𝘤𝘪 ] ≠ 𝟢

• Pooled OLS will be inconsistent for the CEF parameters, 𝜷.

9 / 33



Unmeasured heterogeneity

• Since 𝘶𝘪 𝘵 is the CEF error, 𝗫𝘪 𝘵 are uncorrelated with it: 𝔼[𝗫𝘪 𝘵𝘶𝘪 𝘵 ] = 𝟢.

• If unit-effect 𝘤𝘪 is uncorrelated with 𝗫𝘪 𝘵 , no problem for consistency!

• ⇝ 𝔼[𝗫𝘪 𝘵𝘷𝘪 𝘵 ] = 𝔼[𝗫𝘪 𝘵(𝘤𝘪 + 𝘶𝘪 𝘵)] = 𝟢.
• Just run pooled OLS (but worry about SEs).

• But 𝘤𝘪 often correlated with 𝗫𝘪 𝘵 so that 𝔼[𝗫𝘪 𝘵𝘤𝘪 ] ≠ 𝟢.

• Example: democratic institutions correlated with unmeasured aspects
of health outcomes, like quality of health system or a lack of ethnic
conflict.

• Ignore the heterogeneity⇝ correlation between the combined error
and the independent variables.

• ⇝ 𝔼[𝗫𝘪 𝘵𝘷𝘪 𝘵 ] = 𝔼[𝗫𝘪 𝘵(𝘤𝘪 + 𝘶𝘪 𝘵)] = 𝔼[𝗫𝘪 𝘵𝘤𝘪 ] ≠ 𝟢

• Pooled OLS will be inconsistent for the CEF parameters, 𝜷.

9 / 33



Unmeasured heterogeneity

• Since 𝘶𝘪 𝘵 is the CEF error, 𝗫𝘪 𝘵 are uncorrelated with it: 𝔼[𝗫𝘪 𝘵𝘶𝘪 𝘵 ] = 𝟢.

• If unit-effect 𝘤𝘪 is uncorrelated with 𝗫𝘪 𝘵 , no problem for consistency!

• ⇝ 𝔼[𝗫𝘪 𝘵𝘷𝘪 𝘵 ] = 𝔼[𝗫𝘪 𝘵(𝘤𝘪 + 𝘶𝘪 𝘵)] = 𝟢.
• Just run pooled OLS (but worry about SEs).

• But 𝘤𝘪 often correlated with 𝗫𝘪 𝘵 so that 𝔼[𝗫𝘪 𝘵𝘤𝘪 ] ≠ 𝟢.

• Example: democratic institutions correlated with unmeasured aspects
of health outcomes, like quality of health system or a lack of ethnic
conflict.

• Ignore the heterogeneity⇝ correlation between the combined error
and the independent variables.

• ⇝ 𝔼[𝗫𝘪 𝘵𝘷𝘪 𝘵 ] = 𝔼[𝗫𝘪 𝘵(𝘤𝘪 + 𝘶𝘪 𝘵)] = 𝔼[𝗫𝘪 𝘵𝘤𝘪 ] ≠ 𝟢

• Pooled OLS will be inconsistent for the CEF parameters, 𝜷.

9 / 33



Unmeasured heterogeneity

• Since 𝘶𝘪 𝘵 is the CEF error, 𝗫𝘪 𝘵 are uncorrelated with it: 𝔼[𝗫𝘪 𝘵𝘶𝘪 𝘵 ] = 𝟢.

• If unit-effect 𝘤𝘪 is uncorrelated with 𝗫𝘪 𝘵 , no problem for consistency!

• ⇝ 𝔼[𝗫𝘪 𝘵𝘷𝘪 𝘵 ] = 𝔼[𝗫𝘪 𝘵(𝘤𝘪 + 𝘶𝘪 𝘵)] = 𝟢.
• Just run pooled OLS (but worry about SEs).

• But 𝘤𝘪 often correlated with 𝗫𝘪 𝘵 so that 𝔼[𝗫𝘪 𝘵𝘤𝘪 ] ≠ 𝟢.

• Example: democratic institutions correlated with unmeasured aspects
of health outcomes, like quality of health system or a lack of ethnic
conflict.

• Ignore the heterogeneity⇝ correlation between the combined error
and the independent variables.

• ⇝ 𝔼[𝗫𝘪 𝘵𝘷𝘪 𝘵 ] = 𝔼[𝗫𝘪 𝘵(𝘤𝘪 + 𝘶𝘪 𝘵)] = 𝔼[𝗫𝘪 𝘵𝘤𝘪 ] ≠ 𝟢

• Pooled OLS will be inconsistent for the CEF parameters, 𝜷.

9 / 33



Unmeasured heterogeneity

• Since 𝘶𝘪 𝘵 is the CEF error, 𝗫𝘪 𝘵 are uncorrelated with it: 𝔼[𝗫𝘪 𝘵𝘶𝘪 𝘵 ] = 𝟢.

• If unit-effect 𝘤𝘪 is uncorrelated with 𝗫𝘪 𝘵 , no problem for consistency!

• ⇝ 𝔼[𝗫𝘪 𝘵𝘷𝘪 𝘵 ] = 𝔼[𝗫𝘪 𝘵(𝘤𝘪 + 𝘶𝘪 𝘵)] = 𝟢.
• Just run pooled OLS (but worry about SEs).

• But 𝘤𝘪 often correlated with 𝗫𝘪 𝘵 so that 𝔼[𝗫𝘪 𝘵𝘤𝘪 ] ≠ 𝟢.

• Example: democratic institutions correlated with unmeasured aspects
of health outcomes, like quality of health system or a lack of ethnic
conflict.

• Ignore the heterogeneity⇝ correlation between the combined error
and the independent variables.

• ⇝ 𝔼[𝗫𝘪 𝘵𝘷𝘪 𝘵 ] = 𝔼[𝗫𝘪 𝘵(𝘤𝘪 + 𝘶𝘪 𝘵)] = 𝔼[𝗫𝘪 𝘵𝘤𝘪 ] ≠ 𝟢

• Pooled OLS will be inconsistent for the CEF parameters, 𝜷.

9 / 33



Unmeasured heterogeneity

• Since 𝘶𝘪 𝘵 is the CEF error, 𝗫𝘪 𝘵 are uncorrelated with it: 𝔼[𝗫𝘪 𝘵𝘶𝘪 𝘵 ] = 𝟢.

• If unit-effect 𝘤𝘪 is uncorrelated with 𝗫𝘪 𝘵 , no problem for consistency!

• ⇝ 𝔼[𝗫𝘪 𝘵𝘷𝘪 𝘵 ] = 𝔼[𝗫𝘪 𝘵(𝘤𝘪 + 𝘶𝘪 𝘵)] = 𝟢.
• Just run pooled OLS (but worry about SEs).

• But 𝘤𝘪 often correlated with 𝗫𝘪 𝘵 so that 𝔼[𝗫𝘪 𝘵𝘤𝘪 ] ≠ 𝟢.

• Example: democratic institutions correlated with unmeasured aspects
of health outcomes, like quality of health system or a lack of ethnic
conflict.

• Ignore the heterogeneity⇝ correlation between the combined error
and the independent variables.

• ⇝ 𝔼[𝗫𝘪 𝘵𝘷𝘪 𝘵 ] = 𝔼[𝗫𝘪 𝘵(𝘤𝘪 + 𝘶𝘪 𝘵)] = 𝔼[𝗫𝘪 𝘵𝘤𝘪 ] ≠ 𝟢

• Pooled OLS will be inconsistent for the CEF parameters, 𝜷.

9 / 33



Strict exogeneity

• Panel data allows us to estimate 𝜷 even in this setting

• Two approaches that leverage repeated observations:

• Differencing look at changes over time.
• Fixed effects look at relationships within units.
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2/ First Differencing
Methods



First differencing

• One approach: compare changes over time

• Intuitively, time-constant heterogeneity can’t affect changes over time.

• Two time periods:
𝘠𝘪𝟣 = 𝗫′

𝘪𝟣𝜷 + 𝘤𝘪 + 𝘶𝘪𝟣

𝘠𝘪𝟤 = 𝗫′
𝘪𝟤𝜷 + 𝘤𝘪 + 𝘶𝘪𝟤

• Look at the change in 𝘠 over time:

Δ𝘠𝘪 = 𝘠𝘪𝟤 − 𝘠𝘪𝟣

= (𝗫′
𝘪𝟤𝜷 + 𝘤𝘪 + 𝘶𝘪𝟤) − (𝗫′

𝘪𝟣𝜷 + 𝘤𝘪 + 𝘶𝘪𝟣)
= (𝗫′

𝘪𝟤 − 𝗫′
𝘪𝟣)𝜷 + (𝘤𝘪 − 𝘤𝘪 ) + (𝘶𝘪𝟤 − 𝘶𝘪𝟣)

= Δ𝗫′
𝘪 𝜷 + Δ𝘶𝘪
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First differences model

Δ𝘠𝘪 = Δ𝗫′
𝘪 𝜷 + Δ𝘶𝘪

• Coefficient on the levels 𝗫𝘪 𝘵 = the coefficient on the changes Δ𝗫𝘪

• Time-constant unobserved heterogeneity 𝘤𝘪 drops out.

• For consistency of OLS on the differences, we need 𝔼[Δ𝗫𝘪Δ𝘶𝘪 ] = 𝟢.

𝔼[(𝗫𝘪𝟤 − 𝗫𝘪𝟣)(𝘶𝘪𝟤 − 𝘶𝘪𝟣)] = 𝔼[𝗫𝟤𝘶𝟤] + 𝔼[𝗫𝟣𝘶𝟣] − 𝔼[𝗫𝟣𝘶𝟤] − 𝔼[𝗫𝟤𝘶𝟣] = 𝟢

• First two are 0 since we assume the CEF is correctly specified up to 𝘤𝘪
• 𝔼[𝗫𝟣𝘶𝟤] and 𝔼[𝗫𝟤𝘶𝟣] are additional assumptions: no feedback between
outcome and covariates

• Invertibility of 𝔼[Δ𝗫𝘪 𝘵Δ𝗫′
𝘪𝘵 ] requires 𝗫𝘪 𝘵 to vary over time for someone

• Under these assumptions, pooled OLS on the differences is consistent.
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𝘪𝘵 ] requires 𝗫𝘪 𝘵 to vary over time for someone
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3/ Fixed Effects Methods



Fixed effects models
• Fixed effects model: another way to remove unmeasured heterogeneity

• Focuses on within-unit comparisons: changes in 𝘠𝘪 𝘵 and 𝘟𝘪 𝘵 relative to
their within-group means

• First note that taking the average of the 𝘠 ’s over time for a given unit
leaves us with a very similar model:

𝘠 𝘪 = 𝟣
𝘛

𝘛
∑
𝘵=𝟣

[𝗫′
𝘪𝘵𝜷 + 𝘤𝘪 + 𝘶𝘪 𝘵 ]

= ( 𝟣
𝘛

𝘛
∑
𝘵=𝟣

𝗫′
𝘪𝘵) 𝜷 + 𝟣

𝘛
𝘛

∑
𝘵=𝟣

𝘤𝘪 + 𝟣
𝘛

𝘛
∑
𝘵=𝟣

𝘶𝘪 𝘵

= 𝗫′
𝘪 𝜷 + 𝘤𝘪 + 𝘶𝘪

• Key fact: mean of the time-constant 𝘤𝘪 is just 𝘤𝘪

• This regression is sometimes called the “between regression”
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Within transformation

• Fixed effect or within transformation:

(𝘠𝘪 𝘵 − 𝘠 𝘪 ) = (𝗫′
𝘪𝘵 − 𝗫′

𝘪 )𝜷 + (𝘶𝘪 𝘵 − 𝘶𝘪 )

• Center every covariate and the outcome at its within-unit mean.
• 𝘤𝘪 drops out because its within-unit mean is itself (time-constant).

• If we write ̈𝘠𝘪 𝘵 = 𝘠𝘪 𝘵 − 𝘠 𝘪 , then we can write this more compactly as:

̈𝘠𝘪 𝘵 = �̈�′
𝘪𝘵𝜷 + ̈𝘶𝘪 𝘵
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Fixed effects with Ross data

library(fixest)
fe.mod <- fixest::feols(
log(kidmort_unicef) ~ democracy + log(GDPcur) | id,
data = ross, vcov = ”hetero”)

summary(fe.mod)

## OLS estimation, Dep. Var.: log(kidmort_unicef)
## Observations: 237
## Fixed-effects: id: 53
## Standard-errors: Heteroskedasticity-robust
## Estimate Std. Error t value Pr(>|t|)
## democracy -0.156 0.0314 -4.97 0.0000015379 ***
## log(GDPcur) -0.354 0.0252 -14.03 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## RMSE: 0.18124 Adj. R2: 0.95396
## Within R2: 0.711842
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Strict exogeneity

̈𝘠𝘪 𝘵 = �̈�′
𝘪𝘵𝜷 + ̈𝘶𝘪 𝘵

• To use OLS on demeaned data, need 𝔼[�̈�𝘪 𝘵 ̈𝘶𝘪 𝘵 ] = 𝟢.

• This is not implied by 𝔼[𝘶𝘪 𝘵 |𝗫𝘪 𝘵 , 𝘤𝘪 ] = 𝟢.

• Only implies 𝘶𝘪 𝘵 will be uncorrelated with 𝗫𝘪 𝘵 .

• Like with differencing, need 𝘶𝘪 𝘵 to be uncorrelated with all 𝗫𝘪𝘴

• Why? ̈𝘶𝘪 𝘵 and �̈�𝘪 𝘵 are functions of errors/covariates in all time periods.

• Key assumption is strict exogeneity:

𝔼[𝘶𝘪 𝘵 |𝗫𝘪𝟣, 𝗫𝘪𝟤, … , 𝗫𝘪𝘛 , 𝘤𝘪 ] = 𝟢

• 𝘶𝘪 𝘵 uncorrelated with all covariates for unit 𝘪 at any point in time.
• Rules out lagged dependent variables, since 𝘠𝘪 ,𝘵−𝟣 is a function of 𝘶𝘪 ,𝘵−𝟣.
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• Like with differencing, need 𝘶𝘪 𝘵 to be uncorrelated with all 𝗫𝘪𝘴

• Why? ̈𝘶𝘪 𝘵 and �̈�𝘪 𝘵 are functions of errors/covariates in all time periods.
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Fixed effects and time-invariant covariates

• What if there is a covariate that doesn’t vary over time?

• ⇝ 𝘟𝘪 𝘵 = 𝘟 𝘪 and ̈𝘟𝘪 𝘵 = 𝟢 for all periods 𝘵 .

• If ̈𝘟𝘪 𝘵 = 𝟢 for all 𝘪 and 𝘵 , violates invertibility.

• R/Stata and the like will drop it from the regression.
• Any time-constant variable gets “absorbed” by the fixed effect.

• Can include interactions between time-constant and time-varying
variables, but lower order term of the time-constant variables get
absorbed by fixed effects too.
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Time-constant variables

• Pooled model with a time-constant variable, proportion Islamic:
library(lmtest)
p.mod <- lm(log(kidmort_unicef) ~ democracy + log(GDPcur) + islam, data = ross)
coeftest(p.mod, vcov = vcovHC)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.36014 0.58133 17.82 < 2e-16 ***
## democracy -0.47634 0.09441 -5.05 9.6e-07 ***
## log(GDPcur) -0.25597 0.02671 -9.58 < 2e-16 ***
## islam 0.00855 0.00106 8.06 5.2e-14 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Time-constant variables

• FE model, where the islam variable drops out, along with the intercept:
fe.mod2 <- feols(
log(kidmort_unicef) ~ democracy + log(GDPcur) + islam | id,
data = ross, vcov = ”hetero”)

summary(fe.mod2)

## OLS estimation, Dep. Var.: log(kidmort_unicef)
## Observations: 220
## Fixed-effects: id: 45
## Standard-errors: Heteroskedasticity-robust
## Estimate Std. Error t value Pr(>|t|)
## democracy -0.144 0.0347 -4.14 0.000054978
## log(GDPcur) -0.360 0.0257 -14.00 < 2.2e-16
##
## democracy ***
## log(GDPcur) ***
## ... 1 variable was removed because of collinearity (islam)
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## RMSE: 0.185449 Adj. R2: 0.949078
## Within R2: 0.717818
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Least squares dummy variable

• Naive OLS on demeaned data is ok for ̂𝜷 but the SEs are wrong.

• OLS doesn’t know you “used” the data to estimate the within-unit
means.

• As an alternative, dummy variable estimator regressing:

𝘠𝘪 𝘵 on 𝗫𝘪 𝘵 , 𝘋𝘪𝟤, 𝘋𝘪𝟥, … 𝘋𝘪𝘯

• Here, 𝘋𝘪𝟤 is a binary variable which is 1 if 𝘪 = 𝟤 and 0 otherwise.
• Gives the exact same point estimates as within transformation.

• Comments:

• Pros: easy to implement and gives correct SEs.
• Con: computationally slow with large 𝘯.
• Usually better to use dedicated software like fixest package in R.

20 / 33



Least squares dummy variable

• Naive OLS on demeaned data is ok for ̂𝜷 but the SEs are wrong.
• OLS doesn’t know you “used” the data to estimate the within-unit
means.

• As an alternative, dummy variable estimator regressing:

𝘠𝘪 𝘵 on 𝗫𝘪 𝘵 , 𝘋𝘪𝟤, 𝘋𝘪𝟥, … 𝘋𝘪𝘯

• Here, 𝘋𝘪𝟤 is a binary variable which is 1 if 𝘪 = 𝟤 and 0 otherwise.
• Gives the exact same point estimates as within transformation.

• Comments:

• Pros: easy to implement and gives correct SEs.
• Con: computationally slow with large 𝘯.
• Usually better to use dedicated software like fixest package in R.

20 / 33



Least squares dummy variable

• Naive OLS on demeaned data is ok for ̂𝜷 but the SEs are wrong.
• OLS doesn’t know you “used” the data to estimate the within-unit
means.

• As an alternative, dummy variable estimator regressing:

𝘠𝘪 𝘵 on 𝗫𝘪 𝘵 , 𝘋𝘪𝟤, 𝘋𝘪𝟥, … 𝘋𝘪𝘯

• Here, 𝘋𝘪𝟤 is a binary variable which is 1 if 𝘪 = 𝟤 and 0 otherwise.
• Gives the exact same point estimates as within transformation.

• Comments:

• Pros: easy to implement and gives correct SEs.
• Con: computationally slow with large 𝘯.
• Usually better to use dedicated software like fixest package in R.

20 / 33



Least squares dummy variable

• Naive OLS on demeaned data is ok for ̂𝜷 but the SEs are wrong.
• OLS doesn’t know you “used” the data to estimate the within-unit
means.

• As an alternative, dummy variable estimator regressing:

𝘠𝘪 𝘵 on 𝗫𝘪 𝘵 , 𝘋𝘪𝟤, 𝘋𝘪𝟥, … 𝘋𝘪𝘯

• Here, 𝘋𝘪𝟤 is a binary variable which is 1 if 𝘪 = 𝟤 and 0 otherwise.

• Gives the exact same point estimates as within transformation.

• Comments:

• Pros: easy to implement and gives correct SEs.
• Con: computationally slow with large 𝘯.
• Usually better to use dedicated software like fixest package in R.

20 / 33



Least squares dummy variable

• Naive OLS on demeaned data is ok for ̂𝜷 but the SEs are wrong.
• OLS doesn’t know you “used” the data to estimate the within-unit
means.

• As an alternative, dummy variable estimator regressing:

𝘠𝘪 𝘵 on 𝗫𝘪 𝘵 , 𝘋𝘪𝟤, 𝘋𝘪𝟥, … 𝘋𝘪𝘯

• Here, 𝘋𝘪𝟤 is a binary variable which is 1 if 𝘪 = 𝟤 and 0 otherwise.
• Gives the exact same point estimates as within transformation.

• Comments:

• Pros: easy to implement and gives correct SEs.
• Con: computationally slow with large 𝘯.
• Usually better to use dedicated software like fixest package in R.

20 / 33



Least squares dummy variable

• Naive OLS on demeaned data is ok for ̂𝜷 but the SEs are wrong.
• OLS doesn’t know you “used” the data to estimate the within-unit
means.

• As an alternative, dummy variable estimator regressing:

𝘠𝘪 𝘵 on 𝗫𝘪 𝘵 , 𝘋𝘪𝟤, 𝘋𝘪𝟥, … 𝘋𝘪𝘯

• Here, 𝘋𝘪𝟤 is a binary variable which is 1 if 𝘪 = 𝟤 and 0 otherwise.
• Gives the exact same point estimates as within transformation.

• Comments:

• Pros: easy to implement and gives correct SEs.
• Con: computationally slow with large 𝘯.
• Usually better to use dedicated software like fixest package in R.

20 / 33



Least squares dummy variable

• Naive OLS on demeaned data is ok for ̂𝜷 but the SEs are wrong.
• OLS doesn’t know you “used” the data to estimate the within-unit
means.

• As an alternative, dummy variable estimator regressing:

𝘠𝘪 𝘵 on 𝗫𝘪 𝘵 , 𝘋𝘪𝟤, 𝘋𝘪𝟥, … 𝘋𝘪𝘯

• Here, 𝘋𝘪𝟤 is a binary variable which is 1 if 𝘪 = 𝟤 and 0 otherwise.
• Gives the exact same point estimates as within transformation.

• Comments:

• Pros: easy to implement and gives correct SEs.

• Con: computationally slow with large 𝘯.
• Usually better to use dedicated software like fixest package in R.

20 / 33



Least squares dummy variable

• Naive OLS on demeaned data is ok for ̂𝜷 but the SEs are wrong.
• OLS doesn’t know you “used” the data to estimate the within-unit
means.

• As an alternative, dummy variable estimator regressing:

𝘠𝘪 𝘵 on 𝗫𝘪 𝘵 , 𝘋𝘪𝟤, 𝘋𝘪𝟥, … 𝘋𝘪𝘯

• Here, 𝘋𝘪𝟤 is a binary variable which is 1 if 𝘪 = 𝟤 and 0 otherwise.
• Gives the exact same point estimates as within transformation.

• Comments:

• Pros: easy to implement and gives correct SEs.
• Con: computationally slow with large 𝘯.

• Usually better to use dedicated software like fixest package in R.

20 / 33



Least squares dummy variable

• Naive OLS on demeaned data is ok for ̂𝜷 but the SEs are wrong.
• OLS doesn’t know you “used” the data to estimate the within-unit
means.

• As an alternative, dummy variable estimator regressing:

𝘠𝘪 𝘵 on 𝗫𝘪 𝘵 , 𝘋𝘪𝟤, 𝘋𝘪𝟥, … 𝘋𝘪𝘯

• Here, 𝘋𝘪𝟤 is a binary variable which is 1 if 𝘪 = 𝟤 and 0 otherwise.
• Gives the exact same point estimates as within transformation.

• Comments:

• Pros: easy to implement and gives correct SEs.
• Con: computationally slow with large 𝘯.
• Usually better to use dedicated software like fixest package in R.

20 / 33



Example with Ross data

lsdv.mod <- lm(log(kidmort_unicef) ~ democracy + log(GDPcur) + id,
data = ross)

coeftest(lsdv.mod, vcov = vcovHC)[1:6,]

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 11.385 0.6306 18.05 2.01e-42
## democracy -0.156 0.0366 -4.27 3.14e-05
## log(GDPcur) -0.354 0.0295 -11.99 8.65e-25
## idARG 1.263 0.1425 8.87 6.82e-16
## idARM 0.462 0.1287 3.59 4.20e-04
## idBEN 1.334 0.0884 15.08 7.10e-34
coeftest(fe.mod)[1:2,]

## Estimate Std. Error z value Pr(>|z|)
## democracy -0.156 0.0314 -4.97 6.69e-07
## log(GDPcur) -0.354 0.0252 -14.03 1.08e-44
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4/ Clustering



Clustered dependence: intuition

• Think back to the Gerber, Green, and Larimer (2008) social pressure
mailer example.

• Randomly assign households to different treatment conditions.
• But the measurement of turnout is at the individual level.

• Zero conditional mean error holds here (random assignment)

• Violation of iid/random sampling:

• errors of individuals within the same household are correlated.
• SEs are going to be wrong.

• Called clustering or clustered dependence
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Clustered dependence: notation

• Clusters (groups): 𝘨 = 𝟣, … , 𝘮

• Units: 𝘪 = 𝟣, … , 𝘯𝘨

• 𝘯𝘨 is the number of units in cluster 𝘨

• 𝘯 = ∑𝘮
𝘨=𝟣 𝘯𝘨 is the total number of units

• Units are (usually) belong to a single cluster:

• voters in households
• individuals in states
• students in classes
• rulings in judges

• Outcome varies at the unit-level, 𝘠𝘪𝘨 and the main independent
variable varies at the cluster level, 𝘟𝘨 .
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Clustered dependence: example model

𝘠𝘪𝘨 = 𝛽𝟢 + 𝘟𝘨𝛽𝟣 + 𝘷𝘪𝘨

= 𝛽𝟢 + 𝘟𝘨𝛽𝟣 + 𝘤𝘨 + 𝘶𝘪𝘨

• 𝘶𝘪𝘨 unit error component with 𝕍[𝘶𝘪𝘨 |𝘟𝘨 ] = 𝜎𝟤
𝘶

• 𝘤𝘨 cluster error component with 𝕍[𝘤𝘨 |𝘟𝘨 ] = 𝜎𝟤
𝘤

• 𝘤𝘨 and 𝘶𝘪𝘨 are assumed to be independent of each other.

• ⇝ 𝕍[𝘷𝘪𝘨 |𝘟𝘨 ] = 𝜎𝟤
𝘤 + 𝜎𝟤

𝘶

• What if we ignore this structure and just use 𝘷𝘪𝘨 as the error?
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Lack of independence

• Covariance between two units 𝘪 and 𝘴 in the same cluster:

Cov[𝘷𝘪𝘨 , 𝘷𝘴𝘨 ] = 𝜎𝟤
𝘤

• Correlation between units in the same group is called the intra-class
correlation coefficient, or 𝜌𝘤 :

Cor[𝘷𝘪𝘨 , 𝘷𝘴𝘨 ] = 𝜎𝟤
𝘤

𝜎𝟤𝘤 + 𝜎𝟤𝘶
= 𝜌𝘤

• Zero covariance of two units 𝘪 and 𝘴 in different clusters 𝘨 and 𝘬 :

Cov[𝘷𝘪𝘨 , 𝘷𝘴𝘬 ] = 𝟢
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Example covariance matrix
• v′ = [ 𝘷𝟣,𝟣 𝘷𝟤,𝟣 𝘷𝟥,𝟣 𝘷𝟦,𝟤 𝘷𝟧,𝟤 𝘷𝟨,𝟤 ]

• Variance matrix under clustering:

𝕍[v|𝗫] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜎𝟤
𝘤 + 𝜎𝟤

𝘶 𝜎𝟤
𝘤 𝜎𝟤

𝘤 𝟢 𝟢 𝟢
𝜎𝟤

𝘤 𝜎𝟤
𝘤 + 𝜎𝟤

𝘶 𝜎𝟤
𝘤 𝟢 𝟢 𝟢

𝜎𝟤
𝘤 𝜎𝟤

𝘤 𝜎𝟤
𝘤 + 𝜎𝟤

𝘶 𝟢 𝟢 𝟢
𝟢 𝟢 𝟢 𝜎𝟤

𝘤 + 𝜎𝟤
𝘶 𝜎𝟤

𝘤 𝜎𝟤
𝘤

𝟢 𝟢 𝟢 𝜎𝟤
𝘤 𝜎𝟤

𝘤 + 𝜎𝟤
𝘶 𝜎𝟤

𝘤
𝟢 𝟢 𝟢 𝜎𝟤

𝘤 𝜎𝟤
𝘤 𝜎𝟤

𝘤 + 𝜎𝟤
𝘶

⎤
⎥
⎥
⎥
⎥
⎥
⎦

• Variance matrix under i.i.d.:

𝕍[v|𝗫] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜎𝟤
𝘶 𝟢 𝟢 𝟢 𝟢 𝟢

𝟢 𝜎𝟤
𝘶 𝟢 𝟢 𝟢 𝟢

𝟢 𝟢 𝜎𝟤
𝘶 𝟢 𝟢 𝟢

𝟢 𝟢 𝟢 𝜎𝟤
𝘶 𝟢 𝟢

𝟢 𝟢 𝟢 𝟢 𝜎𝟤
𝘶 𝟢

𝟢 𝟢 𝟢 𝟢 𝟢 𝜎𝟤
𝘶

⎤
⎥
⎥
⎥
⎥
⎥
⎦
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Effects of clustering

𝘠𝘪𝘨 = 𝛽𝟢 + 𝘟𝘨𝛽𝟣 + 𝘤𝘨 + 𝘶𝘪𝘨

• 𝕍𝟢[ ̂𝛽𝟣] = conventional OLS variance assuming i.i.d./homoskedasticity.

• Let 𝕍[ ̂𝛽𝟣] be the true sampling variance under clustering.

• When clusters are balanced, 𝘯∗ = 𝘯𝘨 , comparison of clustered to
conventional:

𝕍[ ̂𝛽𝟣] ≈ 𝕍𝟢[ ̂𝛽𝟣] (𝟣 + (𝘯∗ − 𝟣)𝜌𝘤)

• True variance will be higher than conventional when within-cluster
correlation is positive, 𝜌𝘤 > 𝟢.
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Linear model with clustering

𝘠𝘪𝘨 = 𝗫′
𝘪𝘨𝜷 + 𝘷𝘪𝘨

• Assumptions:

• 𝔼[𝘷𝘪𝘨 ∣ 𝗫𝘪𝘨 ] = 𝟢 so we have the correct CEF.
• 𝔼[𝘷𝘪𝘨 𝘷𝘫𝘨′ ∣ 𝗫𝘪𝘨 , 𝗫𝘫𝘨′ ] = 𝟢 unless 𝘨 = 𝘨 ′.
• Correlated errors allowed within groups, uncorrelated across. Allows
heteroskedasticity.

• Pooled OLS under clustered dependence:

𝗬𝘨 = 𝕏𝘨𝜷 + 𝘃𝘨

• 𝗬𝘨 is the 𝘯𝘨 × 𝟣 vector of responses for cluster 𝘨
• 𝕏𝘨 is the 𝘯𝘨 × 𝘬 matrix of data for the 𝘨th cluster.

• We can write the OLS estimator as:

̂𝜷 = (
𝘮

∑
𝘨=𝟣

𝕏′
𝘨 𝕏𝘨 ) (

𝘮
∑
𝘨=𝟣

𝕏′
𝘨 𝗬𝘨 )
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Cluster-robust variance estimator
• Independence is across clusters so the CLT holds as 𝘮 gets big.

• Key intuition: we’re sampling clusters, not individual units.

• CLT implies
√𝘮( ̂𝜷 − 𝜷) will be asymp. normal with mean 0 and variance:

(𝔼[𝕏′
𝘨 𝕏𝘨 ])−𝟣 𝔼[𝕏′

𝘨 𝘃𝘨 𝘃′
𝘨 𝕏𝘨 ] (𝔼[𝕏′

𝘨 𝕏𝘨 ])−𝟣

• Similar to the iid case, replace population quantities with sample
versions (and divide by 𝘮):

�̂�CL0
̂𝜷 = (𝕏′𝕏)−𝟣 (

𝘮
∑
𝘨=𝟣

𝕏′
𝘨 ̂𝘃𝘨 ̂𝘃′

𝘨 𝕏𝘨 ) (𝕏′𝕏)−𝟣

• Noting: 𝕏′𝕏/𝘮 = 𝘮−𝟣 ∑𝘮
𝘨=𝟣 𝕏′

𝘨 𝕏𝘨

• With small-sample adjustment (reported by most software):

�̂�CL1
̂𝜷 = 𝘮

𝘮 − 𝟣
𝘯 − 𝟣
𝘯 − 𝘬 (𝕏′𝕏)−𝟣 (

𝘮
∑
𝘨=𝟣

𝕏′
𝘨 ̂𝘃𝘨 ̂𝘃′

𝘨 𝕏𝘨 ) (𝕏′𝕏)−𝟣
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Example: Gerber, Green, Larimer
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Social pressure model
load(”../assets/gerber_green_larimer.RData”)
library(lmtest)
social$voted <- 1 * (social$voted == ”Yes”)
social$treatment <- factor(
social$treatment,
levels = c(”Control”, ”Hawthorne”, ”Civic Duty”, ”Neighbors”, ”Self”)

)
mod1 <- lm(voted ~ treatment, data = social)
coeftest(mod1)

##
## t test of coefficients:
##
## Estimate Std. Error t value
## (Intercept) 0.29664 0.00106 279.53
## treatmentHawthorne 0.02574 0.00260 9.90
## treatmentCivic Duty 0.01790 0.00260 6.88
## treatmentNeighbors 0.08131 0.00260 31.26
## treatmentSelf 0.04851 0.00260 18.66
## Pr(>|t|)
## (Intercept) < 2e-16 ***
## treatmentHawthorne < 2e-16 ***
## treatmentCivic Duty 5.8e-12 ***
## treatmentNeighbors < 2e-16 ***
## treatmentSelf < 2e-16 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Social pressure model, CRSEs
library(sandwich)
coeftest(mod1, vcov = sandwich::vcovCL(mod1, cluster = social$hh_id))

##
## t test of coefficients:
##
## Estimate Std. Error t value
## (Intercept) 0.29664 0.00131 226.52
## treatmentHawthorne 0.02574 0.00326 7.90
## treatmentCivic Duty 0.01790 0.00324 5.53
## treatmentNeighbors 0.08131 0.00337 24.13
## treatmentSelf 0.04851 0.00330 14.70
## Pr(>|t|)
## (Intercept) < 2e-16 ***
## treatmentHawthorne 2.8e-15 ***
## treatmentCivic Duty 3.2e-08 ***
## treatmentNeighbors < 2e-16 ***
## treatmentSelf < 2e-16 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Cluster-robust standard errors

• CRSE do not change our estimates ̂𝜷, cannot fix bias

• Valid under clustered dependence when main variable is constant
within cluster

• Relies on independence between clusters
• Allows for arbitrary dependence within clusters
• CRSEs usually > conventional SEs—use when you suspect clustering

• When 𝘟𝘪𝘨 not constant within cluster, but just correlated⇝ more
complicated.

• See Abadie, Athey, Imbens, and Wooldridge (2021).

• Consistency of the CRSE are in the number of groups, not the number
of individuals

• CRSEs can be incorrect with a small (< 50 maybe) number of clusters
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